• Title/Summary/Keyword: Kv potassium channel

Search Result 18, Processing Time 0.022 seconds

Novel Purification Method of Kv 4.2 Potassium Channel from Rat Brain Membrane

  • Park, Sung-Soo
    • Biomedical Science Letters
    • /
    • v.18 no.2
    • /
    • pp.96-103
    • /
    • 2012
  • Kv 4.2 ion channel protein has an ability to open at subthreshold membrane potentials and to recover quickly from inactivation. That is very important for neuronal signal transmission in vertebrate brain. In order to purify Kv 4.2 protein, the novel purification methods were experimented. The purification procedure utilized chromatography on DE-52 ion exchange column and affinity chromatography on a WGA-Sepharose 4B, and Kv 4.2 affinity column chromatography. It was found that 0.5% (wt./vol.) Triton X-100 detergent in lysis buffer worked well for Kv 4.2 protein solubilization from rat brain membrane. Protein quantitative determination was conducted by BCA method at 562 nm for each purification step to avoid determination interference of protein at 280 nm by detergent. The confirmation of Kv 4.2 existence and amount is performed using by SDS-PAGE/immunoblotting or 96-well dot blotting. The Kv 4.2 without interacting protein that contains carbohydrate, was purified from novel biochemical 3-steps purification method for further research.

Change of voltage-gated potassium channel 1.7 expressions in monocrotaline-induced pulmonary arterial hypertension rat model

  • Lee, Hyeryon;Kim, Kwan Chang;Hong, Young Mi
    • Clinical and Experimental Pediatrics
    • /
    • v.61 no.9
    • /
    • pp.271-278
    • /
    • 2018
  • Purpose: Abnormal potassium channels expression affects vessel function, including vascular tone and proliferation rate. Diverse potassium channels, including voltage-gated potassium (Kv) channels, are involved in pathological changes of pulmonary arterial hypertension (PAH). Since the role of the Kv1.7 channel in PAH has not been previously studied, we investigated whether Kv1.7 channel expression changes in the lung tissue of a monocrotaline (MCT)-induced PAH rat model and whether this change is influenced by the endothelin (ET)-1 and reactive oxygen species (ROS) pathways. Methods: Rats were separated into 2 groups: the control (C) group and the MCT (M) group (60 mg/kg MCT). A hemodynamic study was performed by catheterization into the external jugular vein to estimate the right ventricular pressure (RVP), and pathological changes in the lung tissue were investigated. Changes in protein and mRNA levels were confirmed by western blot and polymerase chain reaction analysis, respectively. Results: MCT caused increased RVP, medial wall thickening of the pulmonary arterioles, and increased expression level of ET-1, ET receptor A, and NADPH oxidase (NOX) 4 proteins. Decreased Kv1.7 channel expression was detected in the lung tissue. Inward-rectifier channel 6.1 expression in the lung tissue also increased. We confirmed that ET-1 increased NOX4 level and decreased glutathione peroxidase-1 level in pulmonary artery smooth muscle cells (PASMCs). ET-1 increased ROS level in PASMCs. Conclusion: Decreased Kv1.7 channel expression might be caused by the ET-1 and ROS pathways and contributes to MCT-induced PAH.

Inhibition of voltage-dependent K+ channels by antimuscarinic drug fesoterodine in coronary arterial smooth muscle cells

  • Park, Seojin;Kang, Minji;Heo, Ryeon;Mun, Seo-Yeong;Park, Minju;Han, Eun-Taek;Han, Jin-Hee;Chun, Wanjoo;Park, Hongzoo;Park, Won Sun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.5
    • /
    • pp.397-404
    • /
    • 2022
  • Fesoterodine, an antimuscarinic drug, is widely used to treat overactive bladder syndrome. However, there is little information about its effects on vascular K+ channels. In this study, voltage-dependent K+ (Kv) channel inhibition by fesoterodine was investigated using the patch-clamp technique in rabbit coronary artery. In whole-cell patches, the addition of fesoterodine to the bath inhibited the Kv currents in a concentration-dependent manner, with an IC50 value of 3.19 ± 0.91 μM and a Hill coefficient of 0.56 ± 0.03. Although the drug did not alter the voltage-dependence of steady-state activation, it shifted the steady-state inactivation curve to a more negative potential, suggesting that fesoterodine affects the voltage-sensor of the Kv channel. Inhibition by fesoterodine was significantly enhanced by repetitive train pulses (1 or 2 Hz). Furthermore, it significantly increased the recovery time constant from inactivation, suggesting that the Kv channel inhibition by fesoterodine is use (state)-dependent. Its inhibitory effect disappeared by pretreatment with a Kv 1.5 inhibitor. However, pretreatment with Kv2.1 or Kv7 inhibitors did not affect the inhibitory effects on Kv channels. Based on these results, we conclude that fesoterodine inhibits vascular Kv channels (mainly the Kv1.5 subtype) in a concentration- and use (state)-dependent manner, independent of muscarinic receptor antagonism.

Encainide, a class Ic anti-arrhythmic agent, blocks voltage-dependent potassium channels in coronary artery smooth muscle cells

  • Hongliang Li;Yue Zhou;Yongqi Yang;Yiwen Zha;Bingqian Ye;Seo-Yeong Mun;Wenwen Zhuang;Jingyan Liang;Won Sun Park
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.4
    • /
    • pp.399-406
    • /
    • 2023
  • Voltage-dependent K+ (Kv) channels are widely expressed on vascular smooth muscle cells and regulate vascular tone. Here, we explored the inhibitory effect of encainide, a class Ic anti-arrhythmic agent, on Kv channels of vascular smooth muscle from rabbit coronary arteries. Encainide inhibited Kv channels in a concentration-dependent manner with an IC50 value of 8.91 ± 1.75 μM and Hill coefficient of 0.72 ± 0.06. The application of encainide shifted the activation curve toward a more positive potential without modifying the inactivation curve, suggesting that encainide inhibited Kv channels by altering the gating property of channel activation. The inhibition by encainide was not significantly affected by train pulses (1 and 2 Hz), indicating that the inhibition is not use (state)-dependent. The inhibitory effect of encainide was reduced by pretreatment with the Kv1.5 subtype inhibitor. However, pretreatment with the Kv2.1 subtype inhibitor did not alter the inhibitory effects of encainide on Kv currents. Based on these results, encainide inhibits vascular Kv channels in a concentration-dependent and use (state)-independent manner by altering the voltage sensor of the channels. Furthermore, Kv1.5 is the main Kv subtype involved in the effect of encainide.

Effects of rosiglitazone, an antidiabetic drug, on Kv3.1 channels

  • Hyang Mi Lee;Seong Han Yoon;Min-Gul Kim;Sang June Hahn;Bok Hee Choi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.1
    • /
    • pp.95-103
    • /
    • 2023
  • Rosiglitazone is a thiazolidinedione-class antidiabetic drug that reduces blood glucose and glycated hemoglobin levels. We here investigated the interaction of rosiglitazone with Kv3.1 expressed in Chinese hamster ovary cells using the wholecell patch-clamp technique. Rosiglitazone rapidly and reversibly inhibited Kv3.1 currents in a concentration-dependent manner (IC50 = 29.8 µM) and accelerated the decay of Kv3.1 currents without modifying the activation kinetics. The rosiglitazonemediated inhibition of Kv3.1 channels increased steeply in a sigmoidal pattern over the voltage range of -20 to +30 mV, whereas it was voltage-independent in the voltage range above +30 mV, where the channels were fully activated. The deactivation of Kv3.1 current, measured along with tail currents, was also slowed by the drug. In addition, the steady-state inactivation curve of Kv3.1 by rosiglitazone shifts to a negative potential without significant change in the slope value. All the results with the use dependence of the rosiglitazone-mediated blockade suggest that rosiglitazone acts on Kv3.1 channels as an open channel blocker.

Antidepressant drug paroxetine blocks the open pore of Kv3.1 potassium channel

  • Lee, Hyang Mi;Chai, Ok Hee;Hahn, Sang June;Choi, Bok Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.1
    • /
    • pp.71-80
    • /
    • 2018
  • In patients with epilepsy, depression is a common comorbidity but difficult to be treated because many antidepressants cause pro-convulsive effects. Thus, it is important to identify the risk of seizures associated with antidepressants. To determine whether paroxetine, a very potent selective serotonin reuptake inhibitor (SSRI), interacts with ion channels that modulate neuronal excitability, we examined the effects of paroxetine on Kv3.1 potassium channels, which contribute to high-frequency firing of interneurons, using the whole-cell patch-clamp technique. Kv3.1 channels were cloned from rat neurons and expressed in Chinese hamster ovary cells. Paroxetine reversibly reduced the amplitude of Kv3.1 current, with an $IC_{50}$ value of $9.43{\mu}M$ and a Hill coefficient of 1.43, and also accelerated the decay of Kv3.1 current. The paroxetine-induced inhibition of Kv3.1 channels was voltage-dependent even when the channels were fully open. The binding ($k_{+1}$) and unbinding ($k_{-1}$) rate constants for the paroxetine effect were $4.5{\mu}M^{-1}s^{-1}$ and $35.8s^{-1}$, respectively, yielding a calculated $K_D$ value of $7.9{\mu}M$. The analyses of Kv3.1 tail current indicated that paroxetine did not affect ion selectivity and slowed its deactivation time course, resulting in a tail crossover phenomenon. Paroxetine inhibited Kv3.1 channels in a use-dependent manner. Taken together, these results suggest that paroxetine blocks the open state of Kv3.1 channels. Given the role of Kv3.1 in fast spiking of interneurons, our data imply that the blockade of Kv3.1 by paroxetine might elevate epileptic activity of neural networks by interfering with repetitive firing of inhibitory neurons.

Open Channel Block of hKv1.5 by Psoralen from Heracleum moellendorffii Hance

  • Eun Jae Soon;Cho Bok Hee;Park Jeong Ah;Lee Ggot Im;Lee Taek Yul;Kim Dae Keun;Jung Young Hoon;Yoo Dong Jin;Kwak Yong Geun
    • Archives of Pharmacal Research
    • /
    • v.28 no.3
    • /
    • pp.269-273
    • /
    • 2005
  • A furocoumarin derivative, psoralen (7H-furo[3,2-g][1]benzopyran-7-one), was isolated from the n-hexane fraction of Heracleum moellendorffii Hance. We examined the effects of psor-alen on a human Kv1.5 potassium channel (hKv1.5) cloned from human heart and stably expressed in Uk- cells. We found that psoralen inhibited the hKv1.5 current in a concentration-, use- and voltage-dependent manner with an IC$_{50}$ value of 180 $\pm$ 21 nM at +60 mV. Psoralen accelerated the inactivation kinetics of the hKv1.5 channel, and it slowed the deactivation kinetics of the hKv1.5 current resulting in a tail crossover phenomenon. These results indicate that psoralen acts on the hKv1.5 channel as an open channel blocker. Furthermore, psoralen prolonged the action potential duration of rat atrial muscles in a dose-dependent manner. Taken together, the present results strongly suggest that psoralen may be an ideal antiarrhythmic drug for atrial fibrillation.

The antidiabetic drug rosiglitazone blocks Kv1.5 potassium channels in an open state

  • Lee, Hyang Mi;Hahn, Sang June;Choi, Bok Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.2
    • /
    • pp.135-144
    • /
    • 2022
  • An antidiabetic drug, rosiglitazone is a member of the drug class of thiazolidinedione. Although restrictions on use due to the possibility of heart toxicity have been removed, it is still a drug that is concerned about side effects on the heart. We here examined, using Chinese hamster ovary cells, the action of rosiglitazone on Kv1.5 channels, which is a major determinant of the duration of cardiac action potential. Rosiglitazone rapidly and reversibly inhibited Kv1.5 currents in a concentrationdependent manner (IC50 = 18.9 μM) and accelerated the decay of Kv1.5 currents without modifying the activation kinetics. In addition, the deactivation of Kv1.5 current, assayed with tail current, was slowed by the drug. All of the results as well as the usedependence of the rosiglitazone-mediated blockade indicate that rosiglitazone acts on Kv1.5 channels as an open channel blocker. This study suggests that the cardiac side effects of rosiglitazone might be mediated in part by suppression of Kv1.5 channels, and therefore, raises a concern of using the drug for diabetic therapeutics.

The role of the voltage-gated potassium channel, Kv2.1 in prostate cancer cell migration

  • Park, Hyun Woo;Song, Min Seok;Sim, Hun Ju;Ryu, Pan Dong;Lee, So Yeong
    • BMB Reports
    • /
    • v.54 no.2
    • /
    • pp.130-135
    • /
    • 2021
  • Voltage-gated potassium (Kv) channels are involved in many important cellular functions and play pivotal roles in cancer progression. The expression level of Kv2.1 was observed to be higher in the highly metastatic prostate cancer cells (PC-3), specifically in their membrane, than in immortalized prostate cells (WPMY-1 cells) and comparatively less metastatic prostate cancer cells (LNCaP and DU145 cells). However, Kv2.1 expression was significantly decreased when the cells were treated with antioxidants, such as N-acetylcysteine or ascorbic acid, implying that the highly expressed Kv2.1 could detect reactive oxygen species (ROS) in malignant prostate cancer cells. In addition, the blockade of Kv2.1 with stromatoxin-1 or siRNA targeting Kv2.1 significantly inhibited the migration of malignant prostate cancer cells. Our results suggested that Kv2.1 plays an important role as a ROS sensor and that it is a promising therapeutic molecular target in metastasis of prostate cancer.

Dendritic localization and a cis-acting dendritic targeting element of Kv4.2 mRNA

  • Jo, Anna;Nam, Yeon-Ju;Oh, Jun-Young;Cheon, Hyo-Soon;Jeromin, Andreas;Lee, Jin-A;Kim, Hyong-Kyu
    • BMB Reports
    • /
    • v.43 no.10
    • /
    • pp.677-682
    • /
    • 2010
  • Kv4.2, a pore-forming $\alpha$-subunit of voltage-gated A-type potassium channels, is expressed abundantly in the soma and dendrites of hippocampal neurons, and is responsible for somatodendritic $I_A$ current. Recent studies have suggested that changes in the surface levels of Kv4.2 potassium channels might be relevant to synaptic plasticity. Although the function and expression of Kv4.2 protein have been extensively studied, the dendritic localization of Kv4.2 mRNA is not well described. In this study, Kv4.2 mRNAs were shown to be localized in the dendrites near postsynaptic regions. The dendritic transport of Kv4.2 mRNAs were mediated by microtubule-based movement. The 500 nucleotides of specific regions within the 3'-untranslated region of Kv4.2 mRNA were found to be necessary and sufficient for its dendritic localization. Collectively, these results suggest that the dendritic localization of Kv4.2 mRNAs might regulate the dendritic surface level of Kv4.2 channels and synaptic plasticity.