• Title/Summary/Keyword: Long-Term Curvature

Search Result 24, Processing Time 0.022 seconds

Experimental study on long-term behavior of RC columns subjected to sustained eccentric load

  • Kim, Chang-Soo;Gong, Yu;Zhang, Xin;Hwang, Hyeon-Jong
    • Advances in concrete construction
    • /
    • v.9 no.3
    • /
    • pp.289-299
    • /
    • 2020
  • To investigate the long-term behavior of eccentrically loaded RC columns, which are more realistic in practice than concentrically loaded RC columns, long-term eccentric loading tests were conducted for 10 RC columns. Test parameters included concrete compressive strength, reinforcement ratio, bar yield strength, eccentricity ratio, slenderness ratio, and loading pattern. Test results showed that the strain and curvature of the columns increased with time, and concrete forces were gradually transferred to longitudinal bars due to the creep and shrinkage of concrete. The long-term behavior of the columns varied with the test parameters, and long-term effects were more pronounced in the case of using the lower strength concrete, lower strength steel, lower bar ratio, fewer loading-step, higher eccentricity ratio, and higher slenderness ratio. However, in all the columns, no longitudinal bars were yielded under service loads at the final measuring day. Meanwhile, the numerical analysis modeling using the ultimate creep coefficient and ultimate shrinkage strain measured from cylinder tests gave quite good predictions for the behavior of the columns.

Long-term Deflection Analysis of Simply Supported PC Beams Considering Steel Effects (PC 단순보의 강재영향을 고려한 장기처짐해석)

  • 이대우;박영식;이재훈;신영식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.245-250
    • /
    • 1995
  • Steel effects on creep deformation of prestressed concrete structues are investigated by a parametric study. Prestressed steel ratio, Prestressed steel distribution, initial flexural stress gradient, and modular ratio are selected as parameters. Sectional analysis for the beam section of parameter combination is performed to find curvatrue change due to creep. Based on the investigation, long-term curvature formulas from regression analysis are proposed. Application of the furmulas to simply supported prostressed concrete beam shows the effect of steel on deflection.

  • PDF

Structural analysis of cracked R.C. members subjected to sustained loads and imposed deformations

  • Mola, F.;Gatti, M.C.;Meda, G.
    • Structural Engineering and Mechanics
    • /
    • v.11 no.6
    • /
    • pp.637-650
    • /
    • 2001
  • A structural analysis of cracked R.C. members under instantaneous or sustained loads and imposed displacements is presented. In the first part of the paper the problem of deriving feasible moment-curvature diagrams for a long term analysis of R.C. sections is approached in an exact way by using the Reduced Relaxation Function Method in state I uncracked and the method suggested by CEB in state II cracked. In both states the analysis of the main parameters governing the problem has shown that it is possible to describe the concrete creep behaviour in an approximate way by using the algebraic formulation connected to the Effective Modulus Method. In this way the calculations become quite simple and can be applied in design practice without introducing significant errors. Referring to continuous beams, the structural analysis is then approached in a general way, applying the Force Method and the Principle of Virtual Works. Finally, considering single members, the structural analysis is performed by means of a graphical procedure based on the application of feasible moment-rotation diagrams which allow to easily solve various structural problems and to point out the most interesting aspects of the long term behaviour of cracked R.C. members with rigid or elastically deformable redundant restraints.

The Parametric Study on the Performance Characteristics of Elastic Rail Fastening System on the Sharp Curved Track (급곡선 탄성레일체결장치의 거동특성에 미치는 매개변수 연구)

  • Baik, Chan-Ho;Joo, Bong-Gyu;Choi, Jung-Youl;Choi, Il-Yoon;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2163-2173
    • /
    • 2011
  • In this study, the deformations and stresses occurred in the elastic rail fastening system were evaluated according to applied extreme track forces based on various field conditions, track curvature and poor properties. The purpose of this study is to establish a method for efficient management and suggest guide line for track construction in order to secure the performance quality of the elastic rail fastening system on the sharp curved track.. Therefore, initial construction qualities of rail and concrete bed, initial clamping force and applied extreme track forces were used into experiment as several parameters. Using these test results, the performance characteristics of the elastic rail fastening system were also evaluated. As a result, it suggested the method to secure long-term durability of fastening system and comparing sharp curved track to results on field test.

  • PDF

Clinical studies on neck pain 4 cases associated with kyphotic cervical curvature (Kyphotic cervical curvature로 인한 항통(項痛) 4례(例)에 대한 임상적(臨床的) 고찰(考察))

  • Cho, Hyun-Yeul;Bae, Eun-Jeong;Lee, Kyung-Min;Lee, Jeong-Hoon;Soe, Jung-Chul;Han, Sang-Won
    • Journal of Acupuncture Research
    • /
    • v.19 no.3
    • /
    • pp.230-239
    • /
    • 2002
  • Kyphotic cervical curvature, straghtening is commonly caused by trauma, muscle spasm without trauma and wrong posture, etc. Objective : This study is performed to evaluate the clinical effect of neck pain associated with Kyphotic cervical curvatre on cervical x-ray lateral view. Methods : One of the many causes, We examined the patients with neck pain & upper back pain who visited to Department of Acupuncture & Moxibustion, Gumi Oriental Hospital of Kyung-San University from 16th June 1999 to 22th June 2000. Pre and post treatment, We evaluated the cervical angle, Jochumsen's method, VAS(visual analogue scale) and effective score of treatment. Results & Conclusion : 1. Kyphotic cervical curvature is mainly caused by wrong posture during long term, sudden trauma, etc. therfore, postcervical muscles and tendon are injuryed by strong stress. So, muscle imbalance and pain is occured. 2. On these cases, The improvement index for pre/post treatment showed 28/42, 10/15, 9/30, 28/42 degree in cervical angle. Jochumsen's method showed -1/+2, -9/-3, -5/-2, -1/+2mm. Afer treatment VAS is 2, 1, 1, 1 and effective score of treatment is above good. The results suggest that treatments of Oriental Medicine(Acupuncture & Moxibustion, Chu-Na, Cupping and Physical therapy) are effective methods for neck pain with kyphotic cervical curvature on cervical x-ray lateral view.

  • PDF

Development of 3-Dimensional Polyimide-based Neural Probe with Improved Mechanical Stiffness and Double-side Recording Sites (증가된 기계적 강도 및 양방향 신호 검출이 가능한 3차원 폴리이미드 기반 뉴럴 프로브 개발)

  • Kim, Tae-Hyun;Lee, Kee-Keun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.11
    • /
    • pp.1998-2003
    • /
    • 2007
  • A flexible but implantable polyimide-based neural implant was fabricated for reliable and stable long-term monitoring of neural activities from brain. The developed neural implant provides 3-dimensional (3D) $3{\times}3$ structure, avoids any hand handling, and makes the insertion more efficient and reliable. Any film curvature caused by residual stress was not observed in the electrode. The 3D flexible polyimide electrode penetrated a dense gel whose stiffness is close to live brain tissue, because a ${\sim}1{\mu}m$ thick nickel was electroplated along the edge of the shank in order to improve the stiffness. The recording sites were positioned at both side of the shank to increase the probability of recording neural signals from a target volume of tissue. Impedance remained stable over 72 hours because of extremely low moisture uptake in the polyimide dielectric layers. At electrical recording test in vitro, the fabricated electrode showed excellent recording performance, suggesting that this electrode has the potential for great recording from neuron firing and long-term implant performance.

Book Remodeling Analysis of Femur Using Hybrid Beam Theory (보 이론을 이용한 대퇴골 재생성의 해석)

  • Kim, Seung-Jong;Jeong, Jae-Yeon;Ha, Seong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.329-337
    • /
    • 2000
  • An investigation has been performed to develop an analysis tool based on a nonlinear beam theory, which can be used to predict the long-term behavior of an artificial hip joint. The nonlinear behav ior of the femur arise from the coupled dependence of the bone density and the mechanical properties on each other. The beam theory together with its numerical algorithm is developed to take into account the nonlinear bone remodeling process of the femur that is long enough to be assumed as a beam. A piecewise linear curve for the bone remodeling rate is used in the bone remodeling theory and the surface area density of bone is modeled as the third order polynomial function of bone density. At each section of the beam, a constant curvature is assumed and the longitudinal strains are also assumed to vary linearly across the section. The Newton-Rhapson iteration method is used to solve the nonlinear equations for each cross section of the bone and a backward method is used to march along the time. The density and the remodeling signal ar, calculated along with time for the various time steps, and the developed beam theory has been verified by comparing with the results of finite element analysis of a remodeling bone with an artificial hip joint of titanium prosthesis subjected to uni-axial loads and pure bending moment. It is concluded that the developed beam theory can be used to predict the long-term behavior of the femur and thus to design the artificial hip prosthesis.

Successful management of absent sternum in an infant using porcine acellular dermal matrix

  • Semlacher, Roy Alfred;Nuri, Muhammand A.K.
    • Archives of Plastic Surgery
    • /
    • v.46 no.5
    • /
    • pp.470-474
    • /
    • 2019
  • Congenital absent sternum is a rare birth defect that requires early intervention for optimal long-term outcomes. Descriptions of the repair of absent sternum are limited to case reports, and no preferred method for management has been described. Herein, we describe the use of porcine acellular dermal matrix to reconstruct the sternum of an infant with sternal infection following attempted repair using synthetic mesh. The patient was a full-term male with trisomy 21, agenesis of corpus callosum, ventricular septal defect, patent ductus arteriosus, right-sided aortic arch, and congenital absence of sternum with no sternal bars. Following removal of the infected synthetic mesh, negative pressure wound therapy with instillation was used to manage the open wound and provide direct antibiotic therapy. When blood C-reactive protein levels declined to ${\leq}2mg/L$, the sternum was reconstructed using porcine acellular dermal matrix. At 21 months postoperative, the patient demonstrated no respiratory issues. Physical examination and computed tomography imaging identified good approximation of the clavicular heads and sternal cleft and forward curvature of the ribs. This case illustrates the benefits of negative pressure wound therapy and acellular dermal matrix for the reconstruction of absent sternum in the context of infected sternal surgical site previously repaired with synthetic mesh.

Time-Dependent Differential Equation of PSC Flexural Member with Constant Eccentricity (직선배치 긴장재를 갖는 PSC 휨 부재의 시간종속적 지배미분방정식)

  • 강병수;김택중;조용덕;이용학
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.303-308
    • /
    • 2002
  • A governing differential equation (GDE) of PSC flexural member with constant eccentricity considering the long-term losses including concrete creep, shrinkage, and PS steel relaxation is derived based on the two approaches. The first approach utilizes the force and moment equilibrium equations derived based on the geometry of strains of the uniform and curvature strains while the second one utilizes the principle of minimum total potential energy formulation. The identity of the two GDE's is verified by comparing the coefficients consisting of the GDE's. The boundary conditions resulting from the functional analysis of the variational calculus are investigated. Rayleigh-Ritz method provides a way to get the explicit form of the continuous deflection function in which the total potential energy is minimized with respect to the unknown coefficients consisting of the trial functions. As a closure, the analytically calculated results are compared with the experiments and show good agreements.

  • PDF

Transformation of Long Waves with Vertical Acceleration (연식방향의 가속도를 고려한 장파의 변형해석)

  • 여운광
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.2 no.2
    • /
    • pp.112-117
    • /
    • 1990
  • Boussinesq-type equations should be employed in which the water surface profile is considerably steep or the bottom topography is abruptly changed. The primary reason is that the pressure deviates significantly from the hydrostatic pressure distribution due to the large curvature of the stream lines. It is shown that such a Boussinesq type equation can be also derived by making use of the concept of the averaged flow description for specifying the turbulence effects. In addition, a numerical scheme is developed to solve the equations and the effects of the Boussinesq term is briefly investigated.

  • PDF