• Title/Summary/Keyword: Lorentz group

Search Result 8, Processing Time 0.024 seconds

THE RELATIONSHIP BETWEEN NONCOMMUTATIVE AND LORENTZVIOLATING PARAMETERS IN QUANTUM

  • HEIDARI, A.;GHORBANI, F.;GHORBANI, M.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.16 no.3
    • /
    • pp.205-216
    • /
    • 2012
  • When it comes to Lorentz symmetry violation, there are generally two approaches to studying noncommutative field theory: 1) conventional fields are equivalent to noncommutative fields; however, symmetry groups are larger. 2) The symmetry group is the same as conventional standard model's symmetry group; but fields here are written based on the Seiberg-Witten map. Here by adopting the first approach, we aim to connect Lorentz violation coefficients with noncommutative parameters and compare the results with the second approach's results. Through the experimental values obtained for the Lorentz-violating parameters, we obtain a limit of noncommutative symmetry.

HAUSDORFF OPERATORS ON WEIGHTED LORENTZ SPACES

  • Sun, Qinxiu;Fan, Dashan;Li, Hongliang
    • Korean Journal of Mathematics
    • /
    • v.26 no.1
    • /
    • pp.103-127
    • /
    • 2018
  • This paper is dedicated to studying some Hausdorff operators on the Heisenberg group ${\mathbb{H}}^n$. The sharp bounds on the strong-type weighted Lorentz spaces ${\Lambda}^p_u(w)$ and the weak-type weighted Lorentz spaces ${\Lambda}^{p,{\infty}}_u(w)$ are investigated. Especially, the results cover the classical power weighted space $L^{p,q}_{\alpha}$. The results are also extended to the product spaces ${\Lambda}^{p_1}_{u_1}(w_1){\times}{\Lambda}^{p_2}_{u_2}(w_2)$, especially for $L^{p_1,q_1}_{{\alpha}_1}{\times}L^{p_2,q_2}_{{\alpha}_2}$. Our proofs are quite different from those in previous documents since the duality principle, and some well-known inequalities concerning the weights are adopted. The results recover the existing results as well as we obtain new results in the new and old settings.

ZEEMAN'S THEOREM IN NONDECOMPOSABLE SPACES

  • Duma, Adrian
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.265-277
    • /
    • 1997
  • Let E be a real, non-degenerate, indefinite inner product space with dim $E \geq 3$. It is shown that any bijection of E which preserves the light cones is an affine map.

  • PDF

Effect of Long Time Physical Aging on Ultra Thin 6FDA-Based Polyimide Films Containing Carboxyl Acid Group (Carboxyl Acid Group을 포함한 6FDA-Based 폴리이미드 박막필름의 장시간 에이징에 따른 특성변화)

  • Im, Hyun-Gu;Kim, Joo-Heon;Lee, Hyuk-Soo;Kim, Tae-Min
    • Polymer(Korea)
    • /
    • v.31 no.4
    • /
    • pp.335-342
    • /
    • 2007
  • The goal of this study is to investigate the effect of molecular structure modifications on the kinetics of physical aging of thin films formed from 6FDA-based polyimides with time. The permeability for 6FDA-based polyimide thin films containing carboxyl acid groups commonly decreased 20-50% after the isothermal aging and the selectivity gained anywhere from 10% to 30% while the rate of permeability loss on the change of polymer structure showed different reciprocal relationship between 6FDA-6FpDA based polyimides and 6FDA-DAM based polyimides. The Lorenz-Lorentz equation was used to relate changes in refractive index to densification and volume relaxation with aging time. The permeability as a function of aging time fits the expected form $P=Ae^{(-B/f)}$. The results matched well with the data for different polymer membranes.

Optimal design of a Linear Active Magnetic Bearing using Halbach magnet array for Magnetic levitation (자기부상용 Halbach 자석 배열을 이용한 선형 능동자기 베어링의 최적설계)

  • Lee, Hakjun;Ahn, Dahoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.792-800
    • /
    • 2021
  • This paper presents a new structure for a linear active magnetic bearing using a Halbach magnet array. The proposed magnetic bearing consisted of a Halbach magnet array, center magnet, and single coil. The proposed linear active magnetic bearing has a high dynamic force compared to the previous study. The high dynamic force could be obtained by varying the thickness of a horizontally magnetized magnet. The new structure of Halbach linear active magnetic bearing has a high dynamic force. Therefore, the proposed linear active magnetic bearing increased the bandwidth of the system. Magnetic modeling and optimal design of the new structure of the Halbach linear active magnetic bearing were performed. The optimal design was executed on the geometric parameters of the proposed linear active magnetic bearing using Sequential Quadratic Programming. The proposed linear active magnetic bearing had a static force of 45.06 N and a Lorentz force constant of 19.54 N/A, which is higher than previous research.

In-plane and out-of-plane waves in nanoplates immersed in bidirectional magnetic fields

  • Kiani, Keivan;Gharebaghi, Saeed Asil;Mehri, Bahman
    • Structural Engineering and Mechanics
    • /
    • v.61 no.1
    • /
    • pp.65-76
    • /
    • 2017
  • Prediction of the characteristics of both in-plane and out-of-plane elastic waves within conducting nanoplates in the presence of bidirectionally in-plane magnetic fields is of interest. Using Lorentz's formulas and nonlocal continuum theory of Eringen, the nonlocal elastic version of the equations of motion is obtained. The frequencies as well as the corresponding phase and group velocities pertinent to the in-plane and out-of-plane waves are analytically evaluated. The roles of the strength of in-plane magnetic field, wavenumber, wave direction, nanoplate's thickness, and small-scale parameter on characteristics of waves are discussed. The obtained results show that the in-plane frequencies commonly grow with the in-plane magnetic field. However, the transmissibility of the out-of-plane waves rigorously depends on the magnetic field strength, direction of the propagated transverse waves, small-scale parameter, and thickness of the nanoplate. The criterion for safe transferring of the out-of-plane waves through the conducting nanoplate immersed in a bidirectional magnetic field is also explained and discussed.

The history, present status and future perspective of electronics and electronic technologies (전자공학 및 전자기술의 역사, 현황 그리고 미래)

  • 조규심
    • Journal of the Korean Professional Engineers Association
    • /
    • v.24 no.6
    • /
    • pp.106-112
    • /
    • 1991
  • Electronics has different meanings to different people and in different countries. Hence, let me difine the term in the sense that it is used here. Electronics in the science and the technology of the passage of charged particles in a gas, in a vacumn, or in a semiconductor. The beginning of electronics came in 1895 when H. A. Lorentz postulated the existence of discrete charges called electrons. Two years later J.J. Thompson found these electrons experimentally. In the same year (1897) Braun built what was probaly the first electron tube, essentially a primitive cathode-ray tube. It was not until the start of the 20th century that electronics began to take technological shape. In 1904 Fleming invented the diode which he called a valve. This era begins with the invention of the transistor about 30 years ago. The history of this invention is interesting. M.J. Kelly, director of research(and later president of Bell Laboratories), had the foresight to realize that the telephone system needed electronic switching and better amplifiers. Vacuum tubes were not very reliable, principally because they generated a great deal of heat even when they were not being used, and, particularly, because filaments burned out and the tubes had to be replaced. In 1945 a solid-state physics group wa formed. The foregoing completes the history of electronics and electronic industries up to 1978. There is already a start toward a merging of the computer and the communication industries which might be called information manipulation. This includes storage of information, sorting, computation, information retrieval, and transmission of data. This combination of the computer and the communication fields will penetrate many disciplines. Applications will be made in the fields of law, medicine, biological sciences, engineering, library services publishing banking, reservation systems, management control, education, and defense.

  • PDF

Effect of AC Electric Fields on Counterflow Diffusion Flame of Methane (메탄의 대향류 확산화염에 대한 AC 전기장의 영향)

  • Choi, Byung-Chul;Kim, Hyung-Kuk;Chung, Suk-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.8
    • /
    • pp.849-855
    • /
    • 2012
  • The effect of electric fields on the response of diffusion flames in a counterflow has been investigated experimentally by varying the AC voltage and frequency. The result showed that the flame was stationary with high AC frequency above the threshold frequency, and it increased with the applied voltage and then leveled off at 35 Hz. Below the threshold frequency, however, the flame oscillated with a frequency that was synchronized with the applied AC frequency. This oscillation can be attributed to the ionic wind effect due to the generation of bulk flow, which arises from the momentum transfer by molecular collisions between neutral molecules and ions, where the ions in the reaction zone were accelerated by the Lorentz force.