• Title/Summary/Keyword: MLN4924

Search Result 2, Processing Time 0.017 seconds

The Nedd8-activating enzyme inhibitor MLN4924 suppresses colon cancer cell growth via triggering autophagy

  • Lv, Yongzhu;Li, Bing;Han, Kunna;Xiao, Yang;Yu, Xianjun;Ma, Yong;Jiao, Zhan;Gao, Jianjun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.6
    • /
    • pp.617-625
    • /
    • 2018
  • Neddylation is a post-translational protein modification process. MLN4924 is a newly discovered pharmaceutical neddylation inhibitor that suppresses cancer growth with several cancer types. In our study, we first investigated the effect of MLN4924 on colon cancer cells (HCT116 and HT29). MLN4924 significantly inhibited the neddylation of cullin-1 and colon cancer cell growth in a time and dose-dependent manner. MLN4924 induced G2/M cell cycle arrest and apoptosis in HCT116 and HT29 cells. Moreover, MLN4924 also triggered autophagy in HCT116 and HT29 cells via suppressing the PI3K/AKT/mTOR pathway. Inhibiting autophagy by autophagy inhibitor 3-MA or ATG5 knockdown reversed the function of MLN4924 in suppressing colon cancer cell growth and cell death. Interestingly, MLN4924 suppresses colon cell growth in a xenograft model. Together, our finding revealed that blocking neddylation is an attractive colon cancer therapy strategy, and autophagy might act as a novel anti-cancer mechanism for the treatment of colon cancer by MLN4924.

High Efficiency Apoptosis Induction in Breast Cancer Cell Lines by MLN4924/2DG Co-Treatment

  • Oladghaffari, Maryam;Islamian, Jalil Pirayesh;Baradaran, Behzad;Monfared, Ali Shabestani;Farajollahi, Alireza;Shanehbandi, Dariush;Mohammadi, Mohsen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.13
    • /
    • pp.5471-5476
    • /
    • 2015
  • 2-deoxy-D-Glucose (2DG) causes cytotoxicity in cancer cells by disrupting thiol metabolism. It is an effective component in therapeutic strategies. It targets the metabolism of cancer cells with glycolysis inhibitory activity. On the other hand, MLN4924, a newly discovered investigational small molecule inhibitor of NAE (NEDD8 activating enzyme), inactivates SCF E3 ligase and causes accumulation of its substrates which triggers apoptosis. Combination of these components might provide a more efficient approach to treatment. In this research, 2DG and MLN4924 were co-applied to breast cancer cells (MCF-7 and SKBR-3) and cytotoxic and apoptotic activity were evaluated the by Micro culture tetrazolium test (MTT), TUNEL and ELISA methods. Caspase3 and Bcl2 genes expression were evaluated by real time Q-PCR methods. The results showed that MLN4924 and MLN4924/2DG dose-dependently suppressed the proliferation of MCF7 and SKBR-3 cells. Cell survival of breast cancer cells exposed to the combination of 2DG/MLN4924 was decreased significantly compared to controls (p<0.05), while 2DG and MLN4924 alone had less pronounced effects on the cells. The obtained results suggest that 2DG/MLN4924 is much more efficient in breast cancer cell lines with enhanced cytotoxicity via inducing a apoptosis cell signaling gene, caspase-3.