• Title/Summary/Keyword: Main Grid

Search Result 462, Processing Time 0.036 seconds

An Optimization Method for the Calculation of SCADA Main Grid's Theoretical Line Loss Based on DBSCAN

  • Cao, Hongyi;Ren, Qiaomu;Zou, Xiuguo;Zhang, Shuaitang;Qian, Yan
    • Journal of Information Processing Systems
    • /
    • v.15 no.5
    • /
    • pp.1156-1170
    • /
    • 2019
  • In recent years, the problem of data drifted of the smart grid due to manual operation has been widely studied by researchers in the related domain areas. It has become an important research topic to effectively and reliably find the reasonable data needed in the Supervisory Control and Data Acquisition (SCADA) system has become an important research topic. This paper analyzes the data composition of the smart grid, and explains the power model in two smart grid applications, followed by an analysis on the application of each parameter in density-based spatial clustering of applications with noise (DBSCAN) algorithm. Then a comparison is carried out for the processing effects of the boxplot method, probability weight analysis method and DBSCAN clustering algorithm on the big data driven power grid. According to the comparison results, the performance of the DBSCAN algorithm outperforming other methods in processing effect. The experimental verification shows that the DBSCAN clustering algorithm can effectively screen the power grid data, thereby significantly improving the accuracy and reliability of the calculation result of the main grid's theoretical line loss.

Grid-Connected Three-Phase Inverter System with Sub Inverter using Combination Type UPFC Structure

  • Park, Seong-Mi;Vi, Le Thi Tuan;Jeong, Da-Woom;Park, Sung-Jun;Park, Jang-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.4_1
    • /
    • pp.559-567
    • /
    • 2020
  • As the renewable energy market grows, grid-connected inverters have been improving and expanding in several fields in recent years because energy conversion devices are the main components of solar systems. In this paper, a high-precision new grid-connected three-phase inverter system is proposed. The proposed system consists of a main inverter, a sub inverter and a transformer. The main inverter operates at a low switching frequency and high power and transmits power to the grid. A sub-inverter connected in series with the transmission line through a matching transformer operates at lower power than the main inverter to provide input values to the transformer. The transformer acts as a power supply according to the voltage compensation value. This study is based on the principle of operation of the UPFC(Unified Power Flow Controller) structure used to regulate power flow in AC transmission lines. The grid-connected inverter system proposed in this paper is implemented with high precision and high resolution. The proposed system was verified through its ability to enhance and ensure the safety of the proposed system through simulation and experiment.

Islanding detection algorithm for a micro-grid based on the active and reactive power in the time domain (시간영역에서의 유효/무효전력을 이용한 마이크로그리드의 단독운전의 판단 알고리즘)

  • Lee, Young-Gui;Lee, Hye-Won;Kim, Yeon-Hee;Zheng, Tai-Ying;Kang, Yong-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.145-146
    • /
    • 2011
  • A micro-grid (MG) is usually interconnected to the main grid through the dedicated line. Immediately after the removal of the grid supply, the MG should be disconnected and remain disconnected until the main grid is re-energized. It should detect islanding condition as soon as it happens to adjust the setting of the protection relays in the MG. This paper proposes an islanding detection algorithm for the MG based on the active and reactive power delivered to the dedicated line in the time domain. The performance of the proposed algorithm is verified under islanding conditions and fault conditions using the PSCAD/EMTDC simulator. The results indicate that the proposed algorithm can discriminate the islanding conditions from the various fault conditions.

  • PDF

Future of Grid Technology in Civil Engineering (토목공학에서의 그리드 기술의 미래)

  • Shin, Soo-Bong;Kim, Chul-Young;Yeom, Heon-Young;Kim, Jae-Kwan
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.579-586
    • /
    • 2006
  • The paper introduces the grid technology currently applied intensively to civil engineering around the world. Basic concepts of grid technology and its application areas are summarized. Some of available grid systems in foreign countries and also in Korea are introduced and their main goals and functions aye compared. Through reviewing the KOCED program currently under development in Korea, the future of the grid technology in civil engineering is groped.

  • PDF

A Space-Tapering Approach for a Rectangular Array (직사각형 어레이를 위한 공간체감 방법)

  • Chang, Byong-Kun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.115-122
    • /
    • 1995
  • It is practical to taper the element (e.g., antenna or sensor) spacing with uniform weight rather than to taper the weights with uniform spacing. In a rectangular array, a triangular grid geometry of elements is more economical than a rectangular grid geometry in terms of reducing the number of elements. A space-tapering approach is proposed to improve the performance of a rectangular phased array with a triangular grid geometry of elements above a ground plane. The effects of space tapering on the main beam width and sidelobe level are discussed. It is shown that the proposed approach improves the sidelobe performance while the main beam width becomes a little broader.

  • PDF

Operation Analysis of a Communication-Based DC Micro-Grid Using a Hardware Simulator

  • Lee, Ji-Heon;Kim, Hyun-Jun;Han, Byung-Moon
    • Journal of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.313-321
    • /
    • 2013
  • This paper describes the operation analysis results of a communication-based DC micro-grid using a hardware simulator developed in the lab. The developed hardware simulator is composed of distributed generation devices such as wind power, photovoltaic power and fuel cells, and energy storage devices such as super-capacitors and batteries. Whole system monitoring and control was implemented using a personal computer. The power management scheme was implemented in a main controller based on a TMS320F28335 chip. The main controller is connected with the local controller in each of the distributed generator and energy storage devices through the communication link based on a CAN or an IEC61850. The operation analysis results using the developed hardware simulator confirm the ability of the DC micro-grid to supply the electric power to end users.

Grid Connected Photovoltaic Inverter System Using a New Zero-Current- Transition Scheme (새로운 Zero-Current-Transition 기법을 이용한 계통 연계형 태양광 발전 인버터 시스템)

  • Choi, Young-Deok;Lee, Dong-Yun;Hyun, Dong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2002.04a
    • /
    • pp.213-215
    • /
    • 2002
  • This paper presents grid connected photovoltaic inverter system using a new Zero-Current-Transition(ZCT) technique. The main switches of the proposed grid connected inverter are turned off under the zero current condition by operating the auxiliary circuit and also all semiconductor devices, switches and diodes, are applied to low rated voltage regardless of the load condition. In additionally, the proposed ZCT scheme has advantages, which are without the additional current stresses and the conduction losses on the main switches during the resonance period of the auxiliary circuit. The simulation was performed to verify the validity of the proposed grid connected photovoltaic ZCT inverter system.

  • PDF

Estimation of Live Load Moment for Concrete Unfilled Steel Grid Deck Using Main Bearing Bar Distribution Factor (하중분배 계수를 적용한 비충전 강합성 바닥판 활하중 모멘트 산정)

  • Park, Young hoon;Kim, Sung Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1667-1676
    • /
    • 2014
  • Because of the different flexural rigidity between longitudinal and transverse direction, orthotropic plate theory may be suitable for describing the behavior of composite deck. The ratio of flexural rigidity between longitudinal and transverse direction affects the live load moment. Because of the ratio of flexural rigidity of concrete unfilled steel grid deck has a direct relationship with main bearing bar spacing, it is concluded that the study for the distribution factor which is effected by main bearing bar spacing and aspect ratio is needed. In this study, evaluate the live load moment of concrete unfilled steel grid deck using the AASHTO LRFD Bridge Design Specification and presents the distribution coefficient equation for concrete unfilled steel grid deck.

Performance Analysis of LDAP System in High Performance Grid Environments (고성능 Grid 환경에서의 LDAP 시스템의 성능분석)

  • Quan Chenghao;Kim, Hiecheol;Lee, Yongdoo
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2003.05a
    • /
    • pp.3-7
    • /
    • 2003
  • For high performance Grid environments, an efficient GIS(Grid Information Service is required In the Metacomputing Directory Service(MDS) of the Glogus middleware, the Lightweight Directory Access Protocol(LDAP), which is a distributed directory service protocol, is used. The LDAP GIS differs from general purpose LDAP directories in that most of the LDAP operations are write in Grid environments. To get an efficient design of the GIS, it is thus required to analyze the performance of the LDAP system in the context of Grid environments. This paper presents the result of a performance analysis of LDAP systems. The main objective of the evaluation is to see the performance scalability of the LDAP system in the Grid environment where the write operations prevails. Based on these results, we suggest directions of an efficient LDAP-based GIS for a high performance Grid.

  • PDF

Static Switch Controller Based on Artificial Neural Network in Micro-Grid Systems

  • Saeedimoghadam, Mojtaba;Moazzami, Majid;Nabavi, Seyed. M.H.;Dehghani, Majid
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1822-1831
    • /
    • 2014
  • Micro-grid is connected to the main power grid through a static switch. One of the critical issues in micro-grids is protection which must disconnect the micro-grid from the network in short-circuit contingencies. Protective methods of micro-grid mainly follow the model of distribution system protection. This protection scheme suffers from improper operation due to the presence of single-phase loads, imbalance of three-phase loads and occurrence of power swings in micro-grid. In this paper, a new method which prevents from improper performance of static micro-grid protection is proposed. This method works based on artificial neural network (ANN) and able to differentiate short circuit from power swings by measuring impedance and the rate of impedance variations in PCC bus. This new technique provides a protective system with higher reliability.