• Title/Summary/Keyword: Marcinkiewicz operator

Search Result 8, Processing Time 0.027 seconds

SOME REMARKS ON VECTOR-VALUED TREE MARTINGALES

  • He, Tong-Jun
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.2
    • /
    • pp.395-404
    • /
    • 2012
  • Our first aim of this paper is to define maximal operators a-quadratic variation and of a-conditional quadratic variation for vectorvalued tree martingales and to show that these maximal operators and maximal operators of vector-valued tree martingale transforms are all sublinear operators. The second purpose is to prove that maximal operator inequalities of a-quadratic variation and of a-conditional quadratic variation for vector-valued tree martingales hold provided 2 ${\leq}$ a < $\infty$ by means of Marcinkiewicz interpolation theorem. Based on a result of reference [10] and using Marcinkiewicz interpolation theorem, we also propose a simple proof of maximal operator inequalities for vector-valued tree martingale transforms, under which the vector-valued space is a UMD space.

Weighted Lp Boundedness for the Function of Marcinkiewicz

  • Al-Qassem, Hussain M.
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.1
    • /
    • pp.31-48
    • /
    • 2006
  • In this paper, we prove a weighted norm inequality for the Marcinkiewicz integral operator $\mathcal{M}_{{\Omega},h}$ when $h$ satisfies a mild regularity condition and ${\Omega}$ belongs to $L(log L)^{1l2}(S^{n-1})$, $n{\geq}2$. We also prove the weighted $L^p$ boundedness for a class of Marcinkiewicz integral operators $\mathcal{M}^*_{{\Omega},h,{\lambda}}$ and $\mathcal{M}_{{\Omega},h,S}$ related to the Littlewood-Paley $g^*_{\lambda}$-function and the area integral S, respectively.

  • PDF

A NOTE ON END PROPERTIES OF MARCINKIEWICZ INTEGRAL

  • DING, YONG
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.5
    • /
    • pp.1087-1100
    • /
    • 2005
  • In this note we give the mapping properties of the Marcinkiewicz integral !-to. at some end spaces. More precisely, we first prove that !-to. is a bounded operator from H$^{1,($\mathbb{R) to H$^{1, ($\mathbb{R). As a corollary of the results above, we obtain again the weak type (1,1) boundedness of $\mu$$_{, but the condition assumed on n is weaker than Stein's condition. Finally, we show that !-to. is bounded from BMO($\mathbb{R) to BMO($\mathbb{R). The results in this note are the extensions of the results obtained by Lee and Rim recently.

On the Boundedness of Marcinkiewicz Integrals on Variable Exponent Herz-type Hardy Spaces

  • Heraiz, Rabah
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.2
    • /
    • pp.259-275
    • /
    • 2019
  • The aim of this paper is to prove that Marcinkiewicz integral operators are bounded from ${\dot{K}}^{{\alpha}({\cdot}),q({\cdot})}_{p({\cdot})}({\mathbb{R}}^n)$ to ${\dot{K}}^{{\alpha}({\cdot}),q({\cdot})}_{p({\cdot})}({\mathbb{R}}^n)$ when the parameters ${\alpha}({\cdot})$, $p({\cdot})$ and $q({\cdot})$ satisfies some conditions. Also, we prove the boundedness of ${\mu}$ on variable Herz-type Hardy spaces $H{\dot{K}}^{{\alpha}({\cdot}),q({\cdot})}_{p({\cdot})}({\mathbb{R}}^n)$.