• Title/Summary/Keyword: Mean Droplet Size

Search Result 148, Processing Time 0.024 seconds

The Droplet Size Distribution of Fan Spray at Different Surrounding Conditions (팬형분무의 주변조건에 따른 입자분포 변화)

  • Moon, Seok-Su;Choi, Jae-Joon;Bae, Choong-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.7 s.262
    • /
    • pp.611-619
    • /
    • 2007
  • In this study, the droplet size distribution of a slit injector at different surrounding conditions, such as air flow and fuel temperature, were investigated. Phase Doppler anemometry (PDA) was utilized to investigate the initial droplet size distribution and the effect of fuel temperature and air flow on droplet size distribution. The entrained air motion was also evaluated by the temporal velocity profile of droplets. When the air flow velocity increased, the small droplets were more entrained to the upper and central parts of the spray and this tendency was confirmed by plotting the temporal velocity profile of droplets. This entrainment of small droplets at high airflow velocities caused relatively small mean droplet size at upper and central parts of the spray and the large mean droplet size at downstream and edge of the spray, compared to that of low airflow velocities. The total mean droplet size, obtained by averaging the size of all droplets measured at all test locations, decreased when the high airflow velocities were applied. The increased fuel temperature, with an airflow velocity of 10m/s, caused reduced droplet size at all test locations. However, the decreased value of mean droplet size at high fuel temperatures was relatively higher at upper parts of the spray, compared to downstream, as a result of enhanced entrainment of small droplets to upper parts of the spray.

Spray Characteristics of Fuel Injector in DI Diesel Engine (직접 분사식 디젤 기관 인젝터의 연료 분무 특성)

  • 이창식;김민규;전원식;진다시앙
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.75-81
    • /
    • 2001
  • This paper presents the atomization characteristics of single hole injector in the direct injection type diesel engine. The spray characteristics of fuel injector such as the droplet size and velocity were measured by phase Doppler particle analyzer. In this paper, the atomization characteristics of fuel spray are investigated for the experimental analysis of the measuring data by the results of mean diameter and mean velocity of droplet. The effect of fuel injection pressure on the droplet size shows that the higher injection pressure results in the decrease of mean droplet diameter in the fuel spray. The minimum size of fuel spray droplet appears on the location of 40mm axial distance from nozzle exit of diesel injector. Based on the experimental results, the correlation between the droplet diameter and mean velocity of the diesel spray due to the change of axial and radial distance from the nozzle tip were investigated.

  • PDF

Characteristics of the Droplet Behavior in the Overlap Region of Twin Spray and in Single Spray (이중분무의 중첩영역과 단일분무에서 액적의 거동 특성)

  • Jung, Ji-Won;Cha, Keun-Jong;Kim, Duck-Jool
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.10
    • /
    • pp.1300-1308
    • /
    • 2000
  • The objectives of this study was to investigate the spray characteristics of single spray and twin spray in the overlap region such as mean axial velocity, mean radial velocity, mean droplet size and probability density function of droplet size. A phase doppler anemometer was used as the measurement system for droplet size and velocity. In case of single spray, injection pressure was varied from 0.2MPa to 0.7MPa. Mean axial velocity, mean radial velocity and droplet size were decreased as the distance below nozzle tip was increased. In case of twin spray, the spray characteristics were measured by varying the distance between two nozzles from 127mm to 155mm. In the overlap region, the boundary of the overlap region was determined by obtaining the distribution of mean axial and radial velocity. Droplet size was increased as the distance from nozzle tip was increased. It was found that the distribution of droplet size for twin spray in the overlap region was different to single spray.

Droplet size prediction model based on the upper limit log-normal distribution function in venturi scrubber

  • Lee, Sang Won;No, Hee Cheon
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1261-1271
    • /
    • 2019
  • Droplet size and distribution are important parameters determining venturi scrubber performance. In this paper, we proposed physical models for a maximum stable droplet size prediction and upper limit log-normal (ULLN) distribution parameters. For the proposed maximum stable droplet size prediction model, a Eulerian-Lagrangian framework and a Reitz-Diwakar breakup model are solved simultaneously using CFD calculations to reflect the effect of multistage breakup and droplet acceleration. Then, two ULLN distribution parameters are suggested through best fitting the previously published experimental data. Results show that the proposed approach provides better predictions of maximum stable droplet diameter and Sauter mean diameter compared to existing simple empirical correlations including Boll, Nukiyama and Tanasawa. For more practical purpose, we developed the simple, one dimensional (1-D) calculation of Sauter mean diameter.

A Study on the Droplet Size Distribution of Ultra High Pressure Diesel Spray on Electronic Hydraulic Fuel Injection System (전자유압식 분사계에 의한 초고압 디젤분무의 입경분포에 관한 연구)

  • Jang, S.H.;Ahn, S.K.
    • Journal of Power System Engineering
    • /
    • v.2 no.1
    • /
    • pp.25-30
    • /
    • 1998
  • In order to investigate the droplet size distribution and Sauter Mean Diameter in a ultra high pressure diesel spray, fuel was injected with ultra high pressure into the environments of high pressure and room temperature by an Electronic Hydraulic Fuel Injection System. Droplet size was measured with the immersion liquid sampling technique. The immersion liquid was used a mixture of water-methycellulose solution and ethanol. The Sauter Mean Diameter decreased with increasing injection pressure, with a decrease environmental pressure (back pressure) and nozzle diameter. Increasing the injection pressure makes the fuel density distribution of the spray more homogeneous. An empirical correlation was developed among injection pressure, air density, nozzle diameter and the Sauter Mean Diameter of spray droplets.

  • PDF

Analysis of Sodium Spray Fire Using Gaussian Droplet Size Distribution (Gaussian 액적 크기 분포 함수를 이용한 분무형 화재 현상 해석)

  • Kim, B.H.;Hahn, D.H.;Suh, S.H.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.1
    • /
    • pp.72-81
    • /
    • 2004
  • Study on the analysis of sodium spray fire using Gaussian drop size distribution, which redistributes a droplet spectrum with given mean diameter if its size classes with critical diameter(D>8mm) occur, was carried out. In this case, the oversized droplets were reduced to a stable diameter. Results calculated by the code using Gaussian drop size distribution were in better agreement with AI experimental results than those of NACOM and SPRAY code. The effect of variance on pressure in the test cell appeared greatly by introducing Gaussian function, which could represent various sodium droplet size distribution. The increase of the variance with mean droplet size resulted had an important effect upon the pressure in the test cell.

A Study on the Simultaneous Measurement of Droplet Size and Velocity in a Diesel Fuel Spray (디젤 분무(噴霧) 액적(液滴)의 크기와 속도(速度) 동시계측(同時計測)에 관한 연구(硏究))

  • Chang, Y.J.;Jeon, C.H.;Park, H.l.;Kim, H.K.;Kim, S.J.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.5
    • /
    • pp.11-22
    • /
    • 1994
  • The pupose of this study is to measure droplet size and velocity simultaneously for a transient diesel fuel spray in a quiescent chamber at atmospheric temperature and pressure. Generally, diesel combustion phenomena is mainly governed by characteristics of injection system and fuel spray. Therefore we need to clarify these characteristics for developing more economical diesel systems. In this study, correlation between droplet size and velocity was measured at downstream distance from nozzle. Governing parameters are pump speed and fuel quantity for the detailed nature in this transient diesel fuel spray. It is observed effect to the droplet size and velocity distribution. Velocity(peak, mean, rms), number density and droplet size were investigated simulaneously using PDA in the spray. Various results are presented to illustrate the effects of operation factors and correlation between the droplet diameter and velocity.

  • PDF

Comparison of Dynamic Behavior of Droplet Mean Diameter with 2holes-2sprays and 4holes-2sprays Types Injector for Gasoline Engine (가솔린 엔진용 2홀 2분류와 4홀 2분류 타입 인젝터의 액적 평균 직경의 동적 거동 비교)

  • Kim, Beom-Jun;Cho, Dae-Jin;Yoon, Suck-Ju
    • Journal of ILASS-Korea
    • /
    • v.11 no.1
    • /
    • pp.17-23
    • /
    • 2006
  • The influence of fuel spray characteristics on engine performance has been known as one of the major concerns to Improve fuel economy and to reduce exhaust emissions. In general, the UBHC(Unburned Hydrocarbon) emission could be reduced by decreasing the droplet size of the fuel sprays. In PFI (Port Fuel Injection) gasoline engines, the mixture of air and fuel would not be uniform under a certain condition, because the breakup and production of spray droplets are made in a short distance between the fuel injector and intake valve sheat. In this study, were investigated the transient spray characteristics and dynamic behavior of droplets from 2holes-2sprays and 4holes-2sprays type injectors used in PFI gasoline engine. Mean droplet size and optical concentration were measured by LDPA (Laser Diffraction Particle size Analyzer). The variation of droplet mean diameter and optical concentration were measured for understanding the behavior of unsteady spray.

  • PDF

Wall Impingement Behavior and Droplet Size Measurement in Diesel Spray (디젤분무의 벽면충돌거동 및 분무입경측정)

  • 이장희;김태권;최인수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.4
    • /
    • pp.39-49
    • /
    • 1994
  • An experimental investigation was undertaken in a diesel spray to evaluate wall impingement behavior and droplet size distribution. Emphasis is placed on the possibility of the application for new combustion type which is based on OSKA-D type. Visualization were employed using optical scheme which was a spark shadowgraphy to observe the behavior of wall impingement caused by diesel spray vertically injected at the center of the combustion chamber. Droplet size measurements using Malvern system were made to quantify the visual observations with surface diameter of impingement. The effects of the surface dia. variation on the droplet size during injection with the wall impingement spray are discussed. It was found that for the wall impingement spray the droplet size becomes greatly small rather than the spray without the wall impingement and the droplet deposition rate of the injection fuel is decreased as the surface area of impingement becomes small.

  • PDF

An experimental study on the atomizing characteristics of liquid column type coaxial sprays (액주형 동축노즐 분무의 무화특성에 관한 실험적 연구)

  • 노병준;강신재;오제하
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.41-53
    • /
    • 1992
  • The main purpose of this study is to investigate the atomizing characteristics of a two phase spray by using a liquid column type coaxial nozzle. The experiments have been carried out to analyze the atomization behavior, the droplet size distributions, and the statistical properties of droplet size distributions. Immersion sampling method and the image processing technique were adapted for the measurements of particles, and the distributions of the droplet sizes were statistically analyzed. In the experiments, the mass ratio defined as Mr= $M_{\sigma}$/ $M_{1}$ has been changed from 1.0 to 3.4 and the measurements have been performed along the axis of the spray. As a result of this experimental study, the distributions of droplet size were satisfied with the Log-Normal distributions and arithmetic mean diameter and deviation of mass ratio. Droplet volume-surface mean diameter was denoted by a exponential function of mass-ratio and the exponent was denoted by linear relation according to the central axis from the nozzle. Dispersions, skewness factors and flatness factors had comparatively constant values regardless of mass ratio and location.

  • PDF