• Title/Summary/Keyword: Mechanically Deboned Chicken Meat Hydrolysates

Search Result 3, Processing Time 0.015 seconds

Effect of Mechanically Deboned Chicken Meat Hydrolysates on the Physicochemical Properties of Imitation Fish Paste

  • Jin, Sang-Keun;Go, Gwang-Woong;Jung, Eun-Young;Lim, Hyun-Jung;Yang, Han-Sul;Park, Jae-Hong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.1
    • /
    • pp.115-122
    • /
    • 2014
  • This study investigated on the effects of adding mechanically deboned chicken meat (MDCM) hydrolysates on the quality properties of imitation fish paste (IFP) during storage. IFP was prepared from Alaska Pollack, spent laying hens surimi and protein hydrolysates which were enzymatically extracted from MDCM. The study was designed as a $3{\times}4$ factorial design with three MDCM hydrolysate content groups (0%, 0.4%, and 0.8%) and four storage times (0, 2, 4, and 6 weeks). Addition of MDCM hydrolysates increased crude fat content but lowered water content (p<0.05). The breaking force of IFP, an indicator of gel formation, increased in treated groups compared to control (p<0.05). Angiotensin I-converting enzyme (ACE) activity was inhibited and free radical scavenging activity increased with increasing MDCM hydrolysate content (p<0.05). In conclusion, the addition of MDCM to IFP improves gel characteristics. Additionally, protein hydrolysates from MDCM serve as a potential source of ACE inhibiting peptides.

The Effects of Mechanically Deboned Chicken Hydrolysates on the Characteristics of Imitation Crab Stick

  • Jin, Sang-Keun;Hwang, Jin-Won;Moon, Sungsil;Choi, Yeung-Joon;Kim, Gap-Don;Jung, Eun-Young;Yang, Han-Sul
    • Food Science of Animal Resources
    • /
    • v.34 no.2
    • /
    • pp.192-199
    • /
    • 2014
  • The effects of adding mechanically deboned chicken (MDC) hydrolysates on the quality characteristics of imitation crab stick (ICS) during storage were investigated. ICS was prepared from Alaska Pollack, chicken breast surimi, and protein hydrolysates enzymatically extracted from MDC. ICS samples were divided into 4 groups: without protein hydrolysate (control), added with 0.5% protein hydrolysate (T1), added with 1.0% protein hydrolysate (T2), and added with 1.5% protein hydrolysate (T3). Results showed that crude protein content did not differ significantly among the ICS samples (p>0.05). ICS sample added with MDC hydrolysates had higher crude fat and ash content but lower moisture content than the control (p<0.05). Lightness was significantly lower in T2 and T3 than in the other groups at 0 and 4 wk of storage. Also, whiteness decreased in the groups contained MDC hydrolysates. Breaking force and jelly strength were higher in samples containing MDC hydrolysates compared to control samples (p<0.05). Additionally, saturated fatty acid contents were lower in the groups containing MDC hydrolysates than in control sample groups (p<0.05). Polyunsaturated fatty acid (PUFA) and essential fatty acids (EFA) were significantly higher in T2 and T3 than the control samples. In particular, all samples containing MDC hydrolysates had reduced thiobarbituric acid-reactive substances (TBARS) values at 4 wk. Free radical scavenging activity also was increased with addition of MDC hydrolysates.

Antioxidant, Liver Protective and Angiotensin I-converting Enzyme Inhibitory Activities of Old Laying Hen Hydrolysate in Crab Meat Analogue

  • Jin, Sang Keun;Choi, Jung Seok;Choi, Yeung Joon;Lee, Seung-Jae;Lee, Seung Yun;Hur, Sun Jin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.12
    • /
    • pp.1774-1781
    • /
    • 2016
  • The purpose of this study was to evaluate the antioxidative activities of Crab meat analogue prepared with protein hydrolysates obtained from mechanically deboned chicken meat (MDCM) from spent laying hens. 2,2-diphenyl-1-picrylhydrazyl hydrate (DPPH) radical-scavenging activity was increased by adding MDCM hydrolysates during storage, and activity correlated with the concentration of DPPH added up to 6 weeks of storage. Hydroxyl radical-scavenging activity was increased in all analogues containing MDCM hydrolysates. At 0 days of storage, angiotensin I-converting enzyme (ACE)-inhibitory activity was increased by the addition of MDCM hydrolysates. Activity did not correlate after 6 weeks of storage, in which ACE-inhibitory activity was increased with low concentrations of MDCM hydrolysates, but no ACE-inhibitory activity was observed at higher concentrations. The liver-protecting activity of crab meat analogue was shown to be around 60% of the positive control; however, it was not significantly different among the samples during storage. These results support the use of MDCM as a source of health-promoting constituents in crab meat analogue.