• 제목/요약/키워드: Mepacrine

검색결과 24건 처리시간 0.023초

Effect of the Inhibition of PLA2 on Oxidative Lung Injury Induced by $Interleukin-1{\alpha}$

  • Lee, Young-Man;Cho, Hyun-Gug;Park, Yoon-Yub;Kim, Jong-Ki;Lee, Yoon-Jeong;Park, Won-Hark;Kim, Teo-An
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제2권5호
    • /
    • pp.617-628
    • /
    • 1998
  • In order to understand the pathogenetic mechanism of adult respiratory distress syndrome (ARDS), the role of phospholipase A2 (PLA2) in association with oxidative stress was investigated in rats. $Interleukin-1{\alpha}\;(IL-1,\;50\;{\mu}g/rat)$ was used to induce acute lung injury by neutrophilic respiratory burst. Five hours after IL-1 insufflation into trachea, microvascular integrity was disrupted, and protein leakage into the alveolar lumen was followed. An infiltration of neutrophils was clearly observed after IL-1 treatment. It was the origin of the generation of oxygen radicals causing oxidative stress in the lung. IL-1 increased tumor necrosis factor (TNF) and cytokine-induced neutrophil chemoattractant (CINC) in the bronchoalveolar lavage fluid, but mepacrine, a PLA2 inhibitor, did not change the levels of these cytokines. Although IL-1 increased PLA2 activity time-dependently, mepacrine inhibited the activity almost completely. Activation of PLA2 elevated leukotriene C4 and B4 (LTC4 and LTB4), and 6-keto-prostaglandin $F2{\alpha}\;(6-keto-PGF2{\alpha})$ was consumed completely by respiratory burst induced by IL-1. Mepacrine did not alter these changes in the contents of lipid mediators. To estimate the functional changes of alveolar barrier during the oxidative stress, quantitative changes of pulmonary surfactant, activity of gamma glutamyltransferase (GGT), and ultrastructural changes were examined. IL-1 increased the level of phospholipid in the bronchoalveolar lavage (BAL) fluid, which seemed to be caused by abnormal, pathological release of lamellar bodies into the alveolar lumen. Mepacrine recovered the amount of surfactant up to control level. IL-1 decreased GGT activity, while mepacrine restored it. In ultrastructural study, when treated with IL-1, marked necroses of endothelial cells and type II pneumocytes were observed, while mepacrine inhibited these pathological changes. In histochemical electron microscopy, increased generation of oxidants was identified around neutrophils and in the cytoplasm of type II pneumocytes. Mepacrine reduced the generation of oxidants in the tissue produced by neutrophilic respiratory burst. In immunoelectron microscopic study, PLA2 was identified in the cytoplasm of the type II pneumocytes after IL-1 treatment, but mepacrine diminished PLA2 particles in the cytoplasm of the type II pneumocyte. Based on these experimental results, it is suggested that PLA2 plays a pivotal role in inducing acute lung injury mediated by IL-1 through the oxidative stress by neutrophils. By causing endothelial damage, functional changes of pulmonary surfactant and alveolar type I pneumocyte, oxidative stress disrupts microvascular integrity and alveolar barrier.

  • PDF

Endotoxin-induced Acute Lung Injury is Mediated by PAF Produced via Remodelling of Lyso PAF in the Lungs

  • Lee, Young-Man;Kim, Teo-An
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제4권3호
    • /
    • pp.219-226
    • /
    • 2000
  • In order to elucidate the role of platelet activating factor (PAF) in the acute lung injury induced by endotoxin (ETX), activities of phospholipase A2, lyso PAF acetyltransferase and oxidative stress by neutrophilic respiratory burst were probed in the present study. To induce acute lung injury, $100\;{\mu}g$ of E.coli ETX (type 0127; B8) was instilled directly into the tracheae of Sprague-Dawley rats. Five hours after the ETX instillation, induction of acute lung injury was confirmed by lung leak index and protein contents in the bronchoalveolar lavage (BAL) fluid. At the same time, lung phospholipase A2 (PLA2) activity and expression of group I and II secretory type PLA2 were examined. In these acutely injured rats, ketotifen fumarate, known as lyso PAF acetyltransferase inhibitor and mepacrine were administered to examine the role of PAF in the pathogenesis of the acute lung injury. To know the effect of the ETX in the synthesis of the PAF in the lungs, lyso PAF acetyltransferase activity and PAF content in the lungs were measured after treatments of ETX, ketotifen fumarate and mepacrine. In addition, the role of neutrophils causing the oxidative stress after ETX was examined by measuring lung myeloperoxidase (MPO) and enumerating neutrophils in the BAL fluid. To confirm the oxidative stress in the lungs, pulmonary contents of malondialdehyde (MDA) were measured. After instillation of the ETX in the lungs, lung leak index increased dramatically (p<0.001), whereas mepacrine and ketotifen decreased the lung leak index significantly (p<0.001). Lung PLA2 activity also increased (p<0.001) after ETX treatment compared with control, which was reversed by mepacrine and ketotifen (p<0.001). In the examination of expression of group I and II secretory PLA2, mRNA synthesis of the group II PLA2 was enhanced by ETX treatment, whereas ketotifen and WEB 2086, the PAF receptor antagonist, decreased the expression. The activity of the lysoPAF acetyltransferase increased (p<0.001) after treatment of ETX, which implies the increased synthesis of PAF by the remodelling of lysoPAF in the lungs. Consequently, the contents of the PAF in the lungs were increased by ETX compared with control (p<0.001), while mepacrine (p<0.001) and ketotifen (p<0.01) decreased the synthesis of the PAF in the lungs of ETX treated rats. The infiltration of the neutrophils was confirmed by measuring and enumerating lung MPO and the neutrophils in the BAL fluid respectively. Compared with control, ETX increased lung MPO and number of neutrophils in BAL significantly (p<0.001) whereas mepacrine and ketotifen decrerased number of neutrophils (p<0.001) and MPO (p<0.05, p<0.001, respectively). The lung MDA contents were also increased (p<0.001) by ETX treatment, but treatment with mepacrine (p<0.001) and ketotifen (p<0.01) decreased the lung MDA contents. Collectively, we conclude that ETX increases PLA2 activity, and that the subsequently increased production of PAF was ensued by the remodelling of the lyso PAF resulting in tissue injury by means of oxidative stress in the lungs.

  • PDF

Inhibition of Phospholipase $A_2$ Diminishes the Acute Alveolar Injury Induced by $Interleukin-1{\alpha}$

  • Lee, Young-Man
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제1권1호
    • /
    • pp.71-78
    • /
    • 1997
  • In an attempt to investigate the role of phospholipase $A_2$($PLA_2$) in interleukin-l (IL-l) induced acute lung injury, mepacrine was tried to inhibit $PLA_2$ in IL-l induced ARDS rats. For confirmation of acute lung injury by IL-l, and to know the role of neutrophils in this injury, lung leak index, lung myeloperoxidase(MPO), number of neutrophils and protein content in the bronchoalveolar lavage (BAL) and wet lung weight were measured. At the same time lung $PLA_2$ was measured to know the effect of IL-l on $PLA_2$ activity. Pulmonary surfactant was also measured for an investigation of type II alveolar cell function. Neutrophil adhesion assay was performed to know the effect of $PLA_2$ inhibition in vitro with human umbilical vein endothelial cells (HUVEC). For precise location of injury by IL-l, morpholgical study was performed by electron microscopy. Five hours after instillation of IL-l (50 ng/rat), lung leak index, protein content, number of neutrophils, lung MPO and wet lung weight were increased significantly. Five hours after IL-l instillation lung $PLA_2$ activity was increased significantly, and increased surfactant release was observed in IL-l induced ARDS rats' BAL. In contrast, in rats given mepacrine and IL-l, there was decrease of acute lung injury i.e. decrease of lung leak index, wet lung weight, protein content, number of neutrophils in BAL and decreased lung MPO activity. Mepacrine decreased surfactant release also. Interestingly, inhibition of $PLA_2$ decreased adhesion of human neutrophils to HUVEC in vitro. Morphologically, IL-l caused diffuse necrosis of endothelial cells, type I and II epithelial cells and increased the infiltration of neutrophils in the interstitium of the lung but after mepacrine treatment these pathological findings were lessened. On the basis of these experimental results it is suggested that $PLA_2$ has a major role in the pathogenesis of acute lung injury mediated by neutrophil dependent manner in IL-l induced acute lung injury.

  • PDF

Effect of the Inhibition of Phospholipase $A_2$ in Generation of Free Radicals in Intestinal Ischemia/Reperfusion Induced Acute Lung Injury

  • Lee, Young-Man;Park, Yoon-Yub;Kim, Teo-An;Cho, Hyun-G.;Lee, Yoon-Jeong;Repine, John E.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제3권3호
    • /
    • pp.263-273
    • /
    • 1999
  • The role of phospholipase $A_2\;(PLA_2)$ in acute lung leak induced by intestinal ischemia was investigated in association with neutrophilic respiratory burst. To induce lung leak, we generated intestinal ischemia for 60 min prior to the 120 min reperfusion by clamping superior mesenteric artery in Sprague-Dawley rats. Acute lung leak was confirmed by the increased lung leak index and protein content in bronchoalveolar fluid. These changes were inhibited by mepacrine, the non-specific $PLA_2$ inhibitor. The lung myeloperoxidase (MPO) activity denoting the pulmonary recruitment of neutrophils was increased by intestinal I/R, but decreased by mepacrine. Simultaneously, the number of leukocytes in bronchoalveolar fluid was increased by intestinal ischemia/reperfusion (I/R) and decreased by mepacrine. Gamma glutamyl transferase activity, an index of oxidative stress in the lung, was increased after intestinal I/R but decreased by mepacrine, which implicates that $PLA_2$ increases oxidative stress caused by intestinal I/R. The $PLA_2$ activity was increased after intestinal I/R not only in the intestine but also in the lung. These changes were diminished by mepacrine. In the cytochemical electron microscopy to detect hydrogen peroxide, intestinal I/R increased the generation of the hydrogen peroxide in the lung as well as in the intestine. Expression of interleukin-1 (IL-1) in the lung was investigated through RT-PCR. The expression of IL-1 after intestinal I/R was enhanced, and again, the inhibition of $PLA_2$ suppressed the expression of IL-1 in the lung. Taken together, intestinal I/R seems to induce acute lung leak through the activation of $PLA_2$, the increase of IL-1 expression associated with increased oxidative stress by neutrophilic respiratory burst.

  • PDF

장의 허혈-재관류로 유도된 급성 폐손상에서 아스피린의 작용 (Effect of Aspirin on the Acute Lung Injury Induced by Intestinal Ischemia/Reperfusion.)

  • 박윤엽
    • 생명과학회지
    • /
    • 제19권6호
    • /
    • pp.818-824
    • /
    • 2009
  • 급성 폐손상시 아스피린이 나타내는 염증 억제작용의 기전을 이해하기 위하여 쥐에서 장 허혈-재관류에 의한 급성 폐손상을 유발하여 phospholipase $A_{2}$ 억제제인 mepacrine과 아스피린의 효과를 비교하였다. 내독소 처치시 A549 세포와 RAW264.7 세포에서 cyc1ooxygenase-2 (COX-2)의 발현이 증가했는데, RAW264.7 세포의 반응이 더 크게 나타났다. 장의 허혈-재관류에 의해 장관 및 폐장조직에서 myeloperoxidase 활성도가 증가하여 염증성 호중구의 침윤이 증가했음을 보여 주었다. 조직 소견상에서도 조직 손상과 염증세포의 침윤이 관찰되었으며, 이는 아스피린 또는 mepacrine 전처치 시 억제 되었다. NADPH oxidase 억제작용이 있는 apocynin과 p38 MAPK 억제제인 SB203580은 A549 세포와 RAW264.7 세포의 LPS에 의한 COX-2 발현을 억제시켰으며 RAW264.7 세포에서 더 크게 억제되었다. 이상의 결과를 통해서 아스피린이 급성 폐손상의 예방목적으로 사용될 수 있다고 보여지며, RAW264.7 세포와 A549 세포에서 COX-2 발현은 다른 특성을 보여서 다른 조절기전이 있을 것으로 생각된다.

Ischemia/reperfusion Lung Injury Increases Serum Ferritin and Heme Oxygenase-1 in Rats

  • Park, Yoon-Yub
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제13권3호
    • /
    • pp.181-187
    • /
    • 2009
  • Intestinal ischemia/reperfusion (I/R) is one of common causes of acute lung injury (ALI). Early and accurate diagnosis of patients who are like to develop serious acute respiratory distress syndrome (ARDS) would give a therapeutic advantage. Ferritin and heme oxygenase-1 (HO-1) are increased by oxidative stress and are potential candidates as a predictive biomarker of ARDS. However, the mechanisms responsible for the increases of ferritin and HO-1, and their relationship to ALI, are unclear. In order to elucidate the interactions between ferritin and HO-1, we studied the changes in ferritin and HO-1 levels in serum and bronchoalveolar lavage (BAL) fluid after intestinal I/R injury in rats. Leukocyte number and protein contents in BAL fluid were elevated following I/R, and the increases were attenuated by mepacrine pretreatment. Both serum ferritin and HO-1 concentrations were progressively elevated throughout the 3 h observation period. Mepacrine pretreatment attenuated the increase of serum and BAL fluid ferritin concentrations, but did not suppress the increase of serum HO-1. Moreover, BAL fluid HO-1 levels did not change after I/R or after mepacrine pretreated I/R compared with sham rats. Unlike ferritin, HO-1 levels are not exactly matched with the ALI. Therefore, there might be a different mechanism between the changes of ferritin and HO-1 in intestinal I/R-induced ALI model.

출혈로 인한 폐 염증세포에서의 ferritin과 heme oxygenase-1의 발현 (Severe Hemorrhage Induced Expressions of Ferritin and Heme Oxygenase-1 In Leukocytes)

  • 권정완;박윤엽
    • 생명과학회지
    • /
    • 제19권7호
    • /
    • pp.878-885
    • /
    • 2009
  • 급성 폐손상과 급성 호흡곤란 증후군은 치사율이 매우 높은 질환임에도 불구하고 현재까지 뚜렷한 치료법이 확립되지 않아서 조기진단에 많은 관심을 기울이고 있다. 본 실험에서는 출혈성 쇼크로 유발되는 급성 폐손상 모델에서 철대사를 조절하는 인자로 알려진 heme oxygenase-1 (HO-1)과 ferritin의 변화 양상을 알아보고 급성 폐손상 또는 급성 호흡곤란 증후군의 조기진단인자로서 적합한지를 알아보고자 하였다. 실험동물은 체중 300-450g의 sprague-Dawley rat을 사용하였으며, 급성폐손상과 ferritin 및 HO-1변화의 관계를 알아보기 위하여 정상군(Sham), 출혈군 및 phospholipase A$_2$ 억제제인 mepacrine (60mg/kg, iv)을 전처치한 출혈군으로 나누어 실험하였다. Sham군은 출혈군과 동일하게 수술하고 출혈은 시키지 않았으며 나머지 과정은 출혈군과 동일하게 처리하였다. 출혈은 withdrawal pump를 이용하여 분당 4ml/kg의 속도로 5분간 총 체중kg 당 20ml의 혈액을 대퇴동맥에 연결한 관을 통하여 출혈시켰다. 출혈로 인하여 급성 폐손상이 유발되었으며 이는 mepacrine 전처치로 유의하게 억제되었다. 출혈 후 혈장 단백질 농도는 감소하였으나 혈장 ferritin 농도는 출혈 60분 후부터, HO-1 농도는 90분 후부터 증가하여 2시간 후에는 Shanm군에 비해 크게 증가하였으며, 이는 mepacrine 전처치한 경우에서 유의하게 둔화되었다. 폐세척액 내의 세포에서 ferritin과 HO-1의 발현량은 출혈군에서 가장 크게 나타났고, mepacrine을 전 처치한 출혈군에서 발현량이 줄어들었다. 이상의 결과로 살펴볼 때 혈장 ferritin및 HO-1은 출혈성 쇼크로 유발되는 급성 폐손상의 정도와 밀접한 상관관계를 가지고, 비록 정도의 차이는 있더라도 폐세척액 내의 염증성 세포에서도 발현량이 증가하는 것을 관찰할 수 있었다. 그러므로, 혈장의 ferritin 및 HO-1농도를 급성 폐손상 및 급성 호흡곤란 증후군의 조기진단을 위한 간접적인 생체지표로 사용할 수 있을 것으로 보이며, 이 실험 모델에서는 ferritin이 HO-1보다 더 예민한 인자로 평가된다.

SKF 525A가 휜쥐의 대동맥에서 Sodium nitroprusside, Acetylcholine, Pinacidil에 의한 이완반응에 미치는 효과 (The effect of SKF S25A on SNP-, Ach-, or Pinacidil-Induced Relaxation in the Aorta of Rat)

  • 박조영;김학림;김주원;신창열;최윤미;김진학;안형수;손의동;허인회
    • 약학회지
    • /
    • 제44권1호
    • /
    • pp.80-86
    • /
    • 2000
  • TEA, glibenclamide, L-NAME and SKF 525A-induced contraction were investigated using acetylcholine, sodium nitroprusside (SNP, NO donor) and pinacidil (ATP sensitive $K^{+}$ channel opener) in rat abdominal and thoracic aorta. The relaxant effects of acetylcholine, SNP and pinacidil were not different in the abdominal aorta and in the thoracic aorta. Acetylcholine-induced relaxation was dependent on endothelial cell, but pinacidil was independent endothelia cell. In the presence of TEA, glibenclamide, L-NAME, mepacrine and SKF 525A, acetylcholine and SNP did not change, but pinacidil-induced relaxation was significantly reduced in presence of glibenclamide, which is ATP sensitive $K^{+}$ channel blocker. SKF 525A, which is inhibitor of cytochrome P$_{450}$ dependent epoxygenase, partially inhibited the pinacidil-induced relaxation. These results indicate that the pinacidil-induced relaxation may be mediated by ATP sensitive $K^{+}$ channel and partially by EETs, which is produced by cytochrome P$_{450}$ dependent epoxygenase.enase.

  • PDF

ADHESIVENESS EVALUATION OF ACTIVATED PLATELET USING Arg-Gly-Asp-Phe(RGDF)-IMMOBILIZED SURFACE

  • Kim, J.H.;Kim, H.J.;Kim, J.;Ryu, G.H.;Min, B.G.;Choe, T.B.
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1997년도 추계학술대회
    • /
    • pp.333-336
    • /
    • 1997
  • The adhesion of activated and normal platelets to fibrinogen requires the receptor binding site of GPIIb/IIIa. These recognition sites exists in the A ${\alpha}$ chain(RGDS at 572-575 and RGDF at 95-98) and the carboxy-terminal of ${\gamma}$ chain (HHLGGAKQAGDV at 400-411) of fibrinogen. In this study, we developed RGDF-immobilized surface to detect the unctional state of platelet. RGDF-immobilized surface was prepared on the glass using photolithographic technology. Platelet adhesion to RGDF-immobilized surface was observed by staining platelets with mepacrine using a fluorescence microscope using mepacrine. Using the RGDF peptide of fragment E, we observed that the platelets pretreated with PGE1 interacted incompletely with RGDF-immobilized surface, whereas ADP activated platelets interacted with the surface extensively. These results show that the distinct selectivity of RGDF-immobilized micro-patterned surface can be used to detect the unctional state of platelets.

  • PDF

출혈성 쇼크에 의한 급성 폐손상에서 Phospholipase A2의 활성화에 의한 산화성스트레스의 역할 (Phospholipase A2 Contributes to Hemorrhage-induced Acute Lung Injury Through Neutrophilic Respiratory Burst)

  • 장유석;김성은;전상훈;신태림;이영만
    • Tuberculosis and Respiratory Diseases
    • /
    • 제51권6호
    • /
    • pp.503-516
    • /
    • 2001
  • 연구배경 : 급성 출혈성 쇼크에서 발생하는 급성폐손상의 병인론을 호중구의 산소기 생성과 연관하여 규명하고자 본 연구를 시행하였다. 급성출혈성쇼크에서 폐장내 산소기 생성의 주된 원인이 호중구의 침윤에 의한 것이며 이 때 PLA2의 활성화가호중구의 respiratory burst의 직접적인 원인임올 밝히고지 하였다. 방 법 : 체중 300-350 g 정도의 흰쥐에서 체중/kg 당 20ml정도의 혈액을 5분 동안 뽑아내어 급성 출혈성 쇼크를 유발하고 이 출혈성 쇼크 상태를 1시간 동안 유지하였다. 그 후 급성 폐손상의 지표들을 측정하였다. 동시에 폐장의 미세구조의 변화 및 세포화학적인 검사를 통하여 폐장조직내의 산소기의 형성을 확인하였다. 또한 PLA2 억제제인 mepacrine을 출혈직전에 투여하여 PLA2의 억제에 따른 변화도 검사, 비교하였다. 결 과 : 급성 출혈성 쇼크에 의해 유도된 급성 폐손상에서 호중구의 폐장내 침윤이 확인되었고 이 때 폐부종 및 조직내 산소기 형성의 증가가 관찰되었으며, 폐장내 PLA2의 활성도도 증가하였다. 그러나 mepacrine을 이용하여 PLA2를 억제한 결과, 폐부종의 감소, 산소기 형성의 감소가 확인되었다. 결 론 : 급성 출혈성 쇼크에 의한 급성폐손상은 호중구에 의한 산화성스트레스가 그 원인으로 생각되고 이 때 호중구에 의한 산화성스트레스의 발생에는 PLA2가 주된 역할을 한다고 사료된다.

  • PDF