• Title/Summary/Keyword: Mibefradil

Search Result 7, Processing Time 0.031 seconds

Antihyperalgesic Effects of Ethosuximide and Mibefradil, T-type Voltage Activated Calcium Channel Blockers, in a Rat Model of Postoperative Pain (흰쥐의 술 후 통증 모델에서 T형 칼슘 통로 차단제인 Ethosuximide와 Mibefradil의 항통각과민 효과)

  • Shinn, Helen Ki;Cha, Young Deog;Han, Jeong Uk;Yoon, Jeong Won;Kim, Boo Seong;Song, Jang Ho
    • The Korean Journal of Pain
    • /
    • v.20 no.2
    • /
    • pp.92-99
    • /
    • 2007
  • Background: A correlation between a T-type voltage activated calcium channel (VACC) and pain mechanism has not yet been established. The purpose of this study is to find out the effect of ethosuximide and mibefradil, representative selective T-type VACC blockers on postoperative pain using an incisional pain model of rats. Methods: After performing a plantar incision, rats were stabilized on plastic mesh for 2 hours. Then, the rats were injected with ethosuximide or mibefradil, intraperitoneally and intrathecally. The level of withdrawal threshold to the von Frey filament near the incision site was determined and the dose response curves were obtained. Results: After an intraperitoneal ethosuximide or mibefradil injection, the dose-response curve showed a dose-dependent increase of the threshold in a withdrawal reaction. After an intrathecal injection of ethosuximide, the threshold of a withdrawal reaction to mechanical stimulation increased and the increase was dose-dependent. After an intrathecal injection of mibefradil, no change occurred in either the threshold of a withdrawal reaction to mechanical stimulation or a dose-response curve. Conclusions: The T-type VACC blockers in a rat model of postoperative pain showed the antihyperalgesic effect. This effect might be due to blockade of T-type VACC, which was distributed in the peripheral nociceptors or at the supraspinal level. Further studies of the effect of T-type VACC on a pain transmission mechanism at the spinal cord level would be needed.

Observation of the Incidence of Acrosome Reaction in Human Spermatozoa Treated with Mibefradil as a T-type $Ca^{2+}i$ Channels Inhibitor (T-형 $Ca^{2+}$ 채널 길항제인 Mibefradil을 첨가한 인간 정자의 첨체반응 관찰)

  • Lee, Jae-Ho;Son, Weon-Young;Lee, Jung-Ha;Lee, In-Sun;Kim, Young-Chan;Han, Ching-Tack
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.27 no.1
    • /
    • pp.9-14
    • /
    • 2000
  • Objective: The sperm acrosome reaction is a $Ca^{2+}$-dependent exocytotic event that is triggered by adhesion to the mammalian egg's zona pellucida. Previous studies suggested a role of $Ca^{2+}$ channels in acrosome reactions. This study was conducted to investigate the T-type calcium channel is operated in acrosome reaction of human spermatozoa. Method: Human semen samples were obtained from healthy donors with normal criteria. The spermatozoa were divided into five groups: Group 1 were non-treated as a control; Group 2 where spermatozoa were exposed to 5 ${\mu}M$ $Ca^{2+}$ A23187 $(Ca^{2+}i)$; Group 3 where spermatozoa were exposed 5 ${\mu}M$ $Ca^{2+}i$ and mibefradil; Group 4 where spermatozoa were exposed 5 ${\mu}M$ $Ca^{2+}i$ and nifedipine, and Group 5 where spermatozoa were treated with 5 ${\mu}M$ $Ca^{2+}i$ and both of mibefradil and nifedipine. Spermatozoa in all groups were retrieved after incubation for 15 and 30 minutes at $37^{\circ}C$. After staining with PSA-FITC, fluorescence was observed under a fluorescence microscope, and AR was evaluated on a total>100 spermatozoa/side. Result and Conclusion: We observed on acrosome reaction inhibition rate in human spermatozoa the various of concentration of mibefradil, nifedipine. Maximum response was noted with 1.0 ${\mu}M$ mibefradil and the decrease of acrosome reaction inhibition rate 45%. Nifedipine in acrosome reaction inhibition rate was only about 25%. The $Ca^{2+}i$-induced AR of spermatozoa was significantly suppressed by mibefradil. Incidence of the suppression was depending on concentration of mibefradil. Results from the present study suggest that the human spermatozoa possess T-type channel. The observation that reversible inhibitor of T channels in male germ cells provides a new mechanism of contraceptive action.

  • PDF

Role of T-type $Ca^{2+}$ Channels in the Spontaneous Phasic Contraction of Pregnant Rat Uterine Smooth Muscle

  • Lee, Si-Eun;Ahn, Duck-Sun;Lee, Young-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.3
    • /
    • pp.241-249
    • /
    • 2009
  • Although extracellular $Ca^{2+}$ entry through the voltage-dependent $Ca^{2+}$ channels plays an important role in the spontaneous phasic contractions of the pregnant rat myometrium, the role of the T-type $Ca^{2+}$ channels has yet to be fully identified. The aim of this study was to investigate the role of the T-type $Ca^{2+}$ channel in the spontaneous phasic contractions of the rat myometrium. Spontaneous phasic contractions and $[Ca^{2+}]_i$ were measured simultaneously in the longitudinal strips of female Sprague-Dawley rats late in their pregnancy (on day 18 ${\sim}$ 20 of gestation: term=22 days). The expression of T-type $Ca^{2+}$ channel mRNAs or protein levels was measured. Cumulative addition of low concentrations (< 1 ${\mu}M$) of nifedipine, a L-type $Ca^{2+}$ channel blocker, produced a decrease in the amplitude of the spontaneous $Ca^{2+}$ transients and contractions with no significant change in frequency. The mRNAs and proteins encoding two subunits (${\alpha}$ 1G, ${\alpha}$ 1H) of the T-type $Ca^{2+}$ channels were expressed in longitudinal muscle layer of rat myometrium. Cumulative addition of mibefradil, NNC 55-0396 or nickel induced a concentration-dependent inhibition of the amplitude and frequency of the spontaneous $Ca^{2+}$ transients and contractions. Mibefradil, NNC 55-0396 or nickel also attenuated the slope of rising phase of spontaneous $Ca^{2+}$ transients consistent with the reduction of the frequency. It is concluded that T-type $Ca^{2+}$ channels are expressed in the pregnant rat myometrium and may play a key role for the regulation of the frequency of spontaneous phasic contractions.

Synthesis and Biological Evaluation of 1-Heteroarylmethyl 1,4-Diazepanes Derivatives as Potential T-type Calcium Channel Blockers

  • Ullapu, Punna Reddy;Ku, Su-Jin;Choi, Yeon-Hee;Park, Ji-Yeon;Han, So-Yeop;Baek, Du-Jong;Lee, Jae-Kyun;Pae, Ae-Nim;Min, Sun-Joon;Cho, Yong-Seo
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.spc8
    • /
    • pp.3063-3073
    • /
    • 2011
  • The synthesis and biological evaluation of 1-heteroarylmethyl 1,4-diazepane derivatives as potential T-type calcium channel blockers is described. In this study, we have identified the compound 21i exhibiting the most potent T-type calcium channel blocking activity with $IC_{50}$ value of 0.20 ${\mu}M$, which is superior to that of mibefradil.

Synthesis of [1,2,4]-Triazole Derivatives Containing Benzimidazole and Biological Activities (Benzimidazole을 함유한 [1,2,4]-Triazole 유도체의 합성 및 생물학적 활성)

  • Lee, So-Ha;Jeon, Jae-Ho;Lim, Hye-Won;Pae, Ae-Nim
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.355-361
    • /
    • 2006
  • [1,2,4]-Triazole derivatives were synthesized by 5 steps. Benzimidazole was refluxed with ethyl chloroacetate to give 1H-benzimidazole-acetic acid ethyl ester (1) over 52% yield. Ester (1) was refluxed with hydrazine hydrate in the presence of ethanol to afford 1H-benzimidazole-1-acetic acid, hydrazide (2). 5-Benzoimidazol-1-ylmethyl-4H-[1,2,4]triazole-3-thiol (4) was made via coupling of compound (2) with methyl isothiocyanate, followed by cyclization of 1H-benzimidazole-1-acetic acid, 2-[(methylamino) thioxomethyl]hydrazide (3) on reflux, and finally the target compounds (6a-6v) were synthesized by general substitution reaction. Compounds (6a-6v) were screened for T-type calcium channel blocker using the fluorescence assay by FDSS6000. All compounds (6a-6v) did not show better activities than control compound, mibefradil.

Haloperidol Induces Calcium Ion Influx Via L-Type Calcium Channels in Hippocampal HN33 Cells and Renders the Neurons More Susceptible to Oxidative Stress

  • Kim, Hyeon Soo;Yumkham, Sanatombi;Choi, Jang Hyun;Kim, Eung-Kyun;Kim, Yong Sik;Ryu, Sung Ho;Suh, Pann-Ghill
    • Molecules and Cells
    • /
    • v.22 no.1
    • /
    • pp.51-57
    • /
    • 2006
  • Haloperidol is a classical neuroleptic drug that is still in clinical use and can lead to abnormal motor activity following repeated administration. However, there is little knowledge of how it triggers neuronal impairment. In this study, we report that it induced calcium ion influx via L-type calcium channels and that the elevation of calcium ions induced by haloperidol appeared to render hippocampal cells more susceptible to oxidative stress. Indeed, the level of cytotoxic reactive oxygen species (ROS) and the expression of pro-apoptotic Bax increased in response to oxidative stress in haloperidol-treated cells, and these effects were inhibited by verapamil, a specific L-type calcium channel blocker, but not by the T-type calcium channel blocker, mibefradil. These findings indicate that haloperidol induces calcium ion influx via L-type calcium channels and that this calcium influx influences neuronal fate.

Intracisternal Administration of Voltage Dependent Calcium Channel Blockers Attenuates Orofacial Inflammatory Nociceptive Behavior in Rats

  • Won, Kyoung-A.;Park, Sang-H.;Kim, Bo-K.;Baek, Kyoung-S.;Yoon, Dong-H.;Ahn, Dong-K.
    • International Journal of Oral Biology
    • /
    • v.36 no.2
    • /
    • pp.43-50
    • /
    • 2011
  • Voltage dependent calcium channel (VDCC), one of the most important regulator of $Ca^{2+}$ concentration in neuron, play an essential role in the central processing of nociceptive information. The present study investigated the antinociceptive effects of L, T or N type VDCC blockers on the formalin-induced orofacial inflammatory pain. Experiments were carried out on adult male Sprague-Dawley rats weighing 220-280 g. Anesthetized rats were individually fixed on a stereotaxic frame and a polyethylene (PE) tube was implanted for intracisternal injection. After 72 hours, 5% formalin ($50 \;{\mu}L$) was applied subcutaneously to the vibrissa pad and nociceptive scratching behavior was recorded for nine successive 5 min intervals. VDCC blockers were administered intracisternally 20 minutes prior to subcutaneous injection of formalin into the orofacial area. The intracisternal administration of 350 or $700{\mu}g$ of verapamil, a blocker of L type VDCC, significantly decreased the number of scratches and duration in the behavioral responses produced by formalin injection. Intracisternal administration of 75 or $150 \;{\mu}g$ of mibefradil, a T type VDCC blocker, or 11 or $22\; {\mu}g$ of cilnidipine, a N type VDCC blocker, also produced significant suppression of the number of scratches and duration of scratching in the first and second phase. Neither intracisternal administration of all VDCC blockers nor vehicle did not affect in motor dysfunction. The present results suggest that central VDCCs play an important role in orofacial nociceptive transmission and a targeted inhibition of the VDCCs is a potentially important treatment approach for inflammatory pain originating in the orofacial area.