• Title/Summary/Keyword: Mobile IoT

Search Result 465, Processing Time 0.036 seconds

Software Engineering Principles for the Development of Power-Efficient Mobile IoT Devices (파워 효율이 높은 모바일 IoT 단말 개발을 위한 소프트웨어 공학 원칙)

  • Lee, Hyesun;Lee, Kang Bok;Bang, Hyo-Chan
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.12
    • /
    • pp.762-767
    • /
    • 2015
  • An Internet of Things (IoT) is a system where various "things" are connected to each other via a wired/wireless network, and where information is gathered, processed, and interchanged/shared. One of the important actors in IoT is a mobile IoT device (such as a smartphone or tablet). These devices tend to consume a large amount of power in order to provide various high performance application services; however, as the devices cannot be supplied with power all the time, efficient power management is necessary. Power management of mobile IoT devices involves complex relationships between various entities such as application processors (APs), HW modules inside/outside AP, operating systems, mobile IoT platforms, and applications. In order to develop power-efficient mobile IoT devices, a method is needed to systematically analyze these relationships and manage power based on a clear understanding of them. To address this problem, software engineering principles for the development of power-efficient mobile IoT devices are presented in this paper. The feasibility of the proposed principles have been validated in the domain of smartphone camera power management.

A Design and Implementation for Registration Service of IoT Embedded Node using CoAP Protocol-based Resource Directory in Mobile Internet Environments (모바일 인터넷 환경에서 CoAP 프로토콜 기반의 RD를 이용한 IoT 임베디드 노드 등록 서비스 설계 및 구현)

  • Hang, Lei;Jin, Wenquan;Kim, Do-Hyeun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.147-153
    • /
    • 2016
  • Recently, IETF (Internet Engineering Task) working group has adopted CoAP (Constrained Application Protocol) as a standard IoT proctocol. CoAP is a specialized web transfer protocol for use with constrained nodes and constrained environment such as small memory and low power networks. In this paper, we design and implement a registration service with CoAP protocol based on RD(Resource Directory) to connect IoT nodes in mobile Internet environments. The resource directory between the mobile terminal and IoT nodes provides to discover the IoT nodes and get the context data. The mobile terminal has as the CoAP client and embedded IoT nodes includes as the CoAP server so that it can conveniently manage the constrained IoT nodes to get the context data and control devices in a mobile environments.

Simulation of a Mobile IoT System Using the DEVS Formalism

  • Im, Jung Hyun;Oh, Ha-Ryoung;Seong, Yeong Rak
    • Journal of Information Processing Systems
    • /
    • v.17 no.1
    • /
    • pp.28-36
    • /
    • 2021
  • This paper proposes two novel methods to model and simulate a mobile Internet of Things (IoT) system using the discrete event system specification (DEVS) formalism. In traditional simulation methods, it is advantageous to partition the simulation area hierarchically to reduce simulation time; however, in this case, the structure of the model may change as the IoT nodes to be modeled move. The proposed methods reduce the simulation time while maintaining the model structure, even when the IoT nodes move. To evaluate the performance of the proposed methods, a prototype mobile IoT system was modeled and simulated. The simulation results show that the proposed methods achieve good performance, even if the number of IoT nodes or the movement of IoT nodes increases.

Smart IoT Hardware Control System using Secure Mobile Messenger (모바일 메신저를 이용한 스마트 IoT 하드웨어 제어 시스템)

  • Lee, Sang-Hyeong;Kim, Dong-Hyun;Lee, Hae-Yeoun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2232-2239
    • /
    • 2016
  • IoT industry has been highlighted in the domestic and foreign country. Since most IoT systems operate separate servers in Internet to control IoT hardwares, there exists the possibility of security problems. Also, IoT systems in markets use their own hardware controllers and devices. As a result, there are many limitations in adding new sensors or devices and using applications to access hardware controllers. To solve these problems, we have developed a novel IoT hardware control system based on a mobile messenger. For the security, we have adopted a secure mobile messenger, Telegram, which has its own security protection. Also, it can improve the easy of the usage without any installation of specific applications. For the enhancement of the system accessibility, the proposed IoT system supports various network protocols. As a result, there are many possibility to include various functions in the system. Finally, our IoT system can analyze the collected information from sensors to provide useful information to the users. Through the experiment, we show that the proposed IoT system can perform well.

Systematic Development of Mobile IoT Device Power Management: Feature-based Variability Modeling and Asset Development (모바일 IoT 디바이스 파워 관리의 체계적인 개발 방법: 휘처 기반 가변성 모델링 및 자산 개발)

  • Lee, Hyesun;Lee, Kang Bok;Bang, Hyo-Chan
    • Journal of KIISE
    • /
    • v.43 no.4
    • /
    • pp.460-469
    • /
    • 2016
  • Internet of Things (IoT) is an environment where various devices are connected to each other via a wired/wireless network and where the devices gather, process, exchange, and share information. Some of the most important types of IoT devices are mobile IoT devices such as smartphones. These devices provide various high-performance services to users but cannot be supplied with power all the time; therefore, power management appropriate to a given IoT environment is necessary. Power management of mobile IoT devices involves complex relationships between various entities such as application processors (APs), HW modules inside/outside AP, Operating System (OS), platforms, and applications; a method is therefore needed to systematically analyze and manage these relationships. In addition, variabilities related to power management such as various policies, operational environments, and algorithms need to be analyzed and applied to power management development. In this paper, engineering principles and a method based on them are presented in order to address these challenges and support systematic development of IoT device power management. Power management of connected helmet systems was used to validate the feasibility of the proposed method.

Comparison and Analysis of Functional Features of IoT Operating Systems (IOT 운영체제들의 기능적 특징들의 비교 및 분석)

  • Lee, Yo-Seob;Moon, Phil-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.2
    • /
    • pp.337-344
    • /
    • 2017
  • The ICT industry is changing. From the PC to mobile devices, and from the mobile devices to wearable and IoT devices, it is changing. It requires the OS for the IoT, coming out various IoT OS have been developed in accordance with this need. In this paper, we discuss the kind of OS that supports IoT device, analyze the technology trends.

IoT Data Processing Framework Design using Mobile Agent in Private Cloud Environment (Private Cloud 환경 내에서 모바일 에이전트를 이용한 IoT 데이터 처리 프레임워크 설계)

  • Choi, Kang-im;Choi, Young-keun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.329-330
    • /
    • 2016
  • In the Private Cloud Environment, the data are collected by a variety of IoT devices and Cloud service users be provided with a variety of data collected. To take advantage of this convenient data, we propose the IoT data Processing framework using mobile agent.

  • PDF

Future Trends of IoT, 5G Mobile Networks, and AI: Challenges, Opportunities, and Solutions

  • Park, Ji Su;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • v.16 no.4
    • /
    • pp.743-749
    • /
    • 2020
  • Internet of Things (IoT) is a growing technology along with artificial intelligence (AI) technology. Recently, increasing cases of developing knowledge services using information collected from sensor data have been reported. Communication is required to connect the IoT and AI, and 5G mobile networks have been widely spread recently. IoT, AI services, and 5G mobile networks can be configured and used as sensor-mobile edge-server. The sensor does not send data directly to the server. Instead, the sensor sends data to the mobile edge for quick processing. Subsequently, mobile edge enables the immediate processing of data based on AI technology or by sending data to the server for processing. 5G mobile network technology is used for this data transmission. Therefore, this study examines the challenges, opportunities, and solutions used in each type of technology. To this end, this study addresses clustering, Hyperledger Fabric, data, security, machine vision, convolutional neural network, IoT technology, and resource management of 5G mobile networks.

Design and Implementation of Hadoop-based Big-data processing Platform for IoT Environment (사물인터넷 환경을 위한 하둡 기반 빅데이터 처리 플랫폼 설계 및 구현)

  • Heo, Seok-Yeol;Lee, Ho-Young;Lee, Wan-Jik
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.2
    • /
    • pp.194-202
    • /
    • 2019
  • In the information society represented by the Fourth Industrial Revolution, various types of data and information that are difficult to see are produced, processed, and processed and circulated to enhance the value of existing goods. The IoT(Internet of Things) paradigm will change the appearance of individual life, industry, disaster, safety and public service fields. In order to implement the IoT paradigm, several elements of technology are required. It is necessary that these various elements are efficiently connected to constitute one system as a whole. It is also necessary to collect, provide, transmit, store and analyze IoT data for implementation of IoT platform. We designed and implemented a big data processing IoT platform for IoT service implementation. Proposed platform system is consist of IoT sensing/control device, IoT message protocol, unstructured data server and big data analysis components. For platform testing, fixed IoT devices were implemented as solar power generation modules and mobile IoT devices as modules for table tennis stroke data measurement. The transmission part uses the HTTP and the CoAP, which are based on the Internet. The data server is composed of Hadoop and the big data is analyzed using R. Through the emprical test using fixed and mobile IoT devices we confirmed that proposed IoT platform system normally process and operate big data.

An Emergency-Alert Delivery Approach Based on Cell Broadcast for Smart-City IoT Devices (스마트 시티 용 IoT 단말기를 위한 셀 방송 기반의 경보 전송기법)

  • Chang, Sekchin
    • Journal of Broadcast Engineering
    • /
    • v.27 no.5
    • /
    • pp.762-772
    • /
    • 2022
  • Current disaster alert broadcasting based on mobile communication systems targets personal mobile terminals such as smartphones. However, smart cities require IoT-based services such as smart homes and offices. Therefore, when severe disasters such as earthquakes occur, smart cities must quickly perform appropriate control and respond to buildings and factories. For this, a disaster warning broadcasting technique for IoT terminals for smart cities is required. In this paper, we propose a disaster alert transmission method based on 4G/5G mobile communication for IoT terminals for smart cities. The proposed method effectively utilizes the image display method for CBS, a cell-based broadcasting service, and shows the superiority of the proposed approach through simulation.