• 제목/요약/키워드: Monogastric Animal Production

검색결과 33건 처리시간 0.02초

Novel zinc sources as antimicrobial growth promoters for monogastric animals: a review

  • Lei, Xin Jian;Liu, Zhang Zhuang;Park, Jae Hong;Kim, In Ho
    • Journal of Animal Science and Technology
    • /
    • 제64권2호
    • /
    • pp.187-196
    • /
    • 2022
  • The essentiality of zinc for animals has been recognized over 80 years. Zinc is an essential trace element that is a component of many enzymes and is associated with the various hormones. Apart from the nutritional function, zinc has antimicrobial property and often be supplemented in diets in the quantities greater than which is required to meet the nutritional requirement, especially for weaning pigs. This review will focus on the application of pharmacological zinc and its mechanisms which may be responsible for the effects of zinc on performance and health of monogastric animals. Various novel sources of zinc in non-ruminant animal production will also be discussed. These should assist in more precisely formulating feed to maximize the production performance and to maintain the health condition of monogastric animals.

Monogastric Animal Production Systems in Small Farms in Tropical Countries - Review -

  • Saadullah, M.;Saad, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제13권3호
    • /
    • pp.401-412
    • /
    • 2000
  • Like other livestock, monogastric animals are essential components of the farming systems in the tropical countries. Pigs, chicken and ducks are by far the most important animals in the culture of the peoples of developing countries in the tropics. Traditionally these animals are raised in small farms and they are also the bulk producers of meat, eggs etc. in the tropics. In many countries the farmers of these small farms are unable to meet the requirement set by financial institution and other loan giving agencies for agricultural loan. Thus, the small farmers can get neither the opportunity to generate sufficient income to support the family nor to extend the livestock activities. The production systems are characterized by small number of animals with no or minimal inputs, low outputs and periodic destruction of animals by disease. Typically the litter size or flocks are small in number with each household containing 5-6 pigs and 7-10 poultry. Animals are owned by individual households and mostly maintained under a scavenging systems with little or no inputs for housing, feeding or health care. Because of the nature of this production system, productivity of these animals is rather low. The low level of inputs is due to a lack of capital and a low risk oriented outlook. The feed resource base for monogastric is scavenging and consists of household waste, roots and tuber, grain by-products and anything edible found in the immediate environment. Usually farmers select breeding gilts from their own female piglets or to a lesser extent, buy them from neighbors for natural mating. As regards poultry attempts have been made to increase egg and meat production by improving local poultry birds by upgrading and crossbreeding with exotic germ plasma in the tropics. Animal disease present a major constraint to animal production in the tropical region and the extent of the losses due to disease is very high.

Increasing sustainability in pork production by using high inclusion levels of co-products distillers dried grains with solubles, wheat middling and canola meal doesn't affect pig growth performance and meat quality but reduces boar taint

  • Thanh T. Nguyen;Shola G. Olumodeji;Kirsty L. Chidgey;Timothy J. Wester;Carolina E. Realini;Patrick C. H. Morel
    • Animal Bioscience
    • /
    • 제36권7호
    • /
    • pp.1091-1100
    • /
    • 2023
  • Objective: The present study is to examine the effect of high inclusion of co-products in pig diets (referred to as an alternative diet) during the finishing stage on pig growth performance, meat quality and boar taint compounds. Methods: Growing pigs were fed an alternative diet made with distillers dried grains with solubles (25%), canola meal (20%), and wheat middling (15%) or a control diet based on barley and soybean meal to investigate the impact of co-products on pig performance and meat quality. Sixteen female and sixteen entire male Duroc×(Large White×Landrace) pigs (22.6±2.07 kg, body weight±standard error) were equally allocated to the diets. Results: Pigs fed the alternative diet had a lower feed intake; however, growth rate and feed conversion efficiency were unaffected by diet. A diet by sex interaction was found for gain:feed whereby males fed the alternative diet had the best feed conversion (p<0.01). Pork from pigs fed the alternative diet had lower a* and Chroma and protein % (p<0.05), while other meat quality characteristics were unaffected. The alternative diet reduced backfat skatole levels (p<0.001). Conclusion: A diet containing high inclusion levels of co-products can be fed to pigs during the finishing stage without detrimental effects on pig performance or meat quality and with the potential to enhance pork flavour. This finding suggests a solution to increase the sustainable development of pig production.

An Ileal Amino Acid Digestibility Assay for the Growing Meat Chicken-Effect of Feeding Method and Digesta Collection Procedures

  • Yap, K.H.;Kadim, I.T.;King, R.D.;Moughan, P.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제10권6호
    • /
    • pp.671-678
    • /
    • 1997
  • The objective was to evaluate method of feeding (free access or intubation), method of slaughter (carbon dioxide gas or barbiturate) and digesta flushing medium (distilled water or physiological saline), in the development of an ileal amino acid digestibility assay for 4 week-old broiler chickens. Three diets were used (commercial (C), semi-synthetic meat-and bone meal (MBM) or wheat (W)). For the coarser C and W diets but not for the MBM diet, feeding method had a significant effect on concentrations of chromium (Cr), nitrogen (N), acid detergent fibre (ADF) and neutral detergent fibre (NDF) in the crop contents at a set time after a meal. There appeared to be a selection of food particles under free-access feeding. For birds receiving the wheat diet there was an effect (p < 0.05) of sampling time after feeding on the concentrations of Cr, N, ADF and NDF/Cr in the crop contents. Flushing ileal digesta with distilled water or saline led to similar apparent ileal N digestibility coefficients. Birds given the MBM diet, and killed by inhalation of $CO_2$, had significantly (p < 0.05) lower apparent ileal N digestibility coefficients (73 versus 80%) than those killed by barbiturate overdose.

Phytic Acid와 Phytase에 관한 동물산업적 고찰 (An Animal-Industrial Review on Phytic Acid and Phytase)

  • 양시용;김창원;강창원
    • 한국축산시설환경학회지
    • /
    • 제7권2호
    • /
    • pp.83-102
    • /
    • 2001
  • Phytic acid (myo-inositol hexaphosphate or IP6) is the major storage form of phosphorus in cereals and legumes, representing 18 to 88% of the total phosphorus. Phytate form of phosphorus is not readily utilized by monogastric animals and this result causes pollution problem by phosporus released in areas of intensive livestock production. The interaction between phytic acid and essential dietary minerals, protein, or vitamins is considered to be one of the primary factors limiting the nutritional values of cereals and legunes in monogastric animals. Attempts have been made to hydrolyze dietary phytic acid by phytases to improve the feed quality and to decrease the amount of phosphorus excreted by animals. Phytase(myo-inositol hexakisphosphate phosphohydrolase) hydrolyzes phytic acid to myo-inositol and phosphoric acid. Two types of phytases are known: 3-phytase (EC 3.1.3.8) and 6-phytase (EC 3.1.3.26), indicating the intial attack to the susceptable phosphoester bond. Because of its great industrial importance, there is ongoing interest in isolating new bacterial strains producing novel and efficient phytases.

  • PDF

Usage of Enzyme Substrate to Protect the Activities of Cellulase, Protease and α-Amylase in Simulations of Monogastric Animal and Avian Sequential Total Tract Digestion

  • Wang, H.T.;Hsu, J.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제19권8호
    • /
    • pp.1164-1173
    • /
    • 2006
  • Cellulase from Aspergillus niger, (${\alpha}$-amylase from Bacillus sp. and protease from Bacillus globigii were used as enzyme sources in this study to examine how their respective substrates protect them in two kinds of simulated gastrointestinal tract digesting processes. Avian total digest tract simulation test showed that filter paper, Avicel and cellulose resulted in 7.7, 6.4 and 7.4 times more activity than of unprotected cellulose, respectively. Protease with addition of casein, gelatin or soybean protein showed no significant protection response. Starch protected amylase to be 2.5 times activity of the unprotected one. Monogastric animal total tract digestion simulation test showed that filter paper, Avicel and cellulose resulted in 5.9, 9.0 and 8.8 times activity of unprotected cellulase, respectively. Casein, gelatin and soybean protein resulted in 1.2, 1.3 and 2.0 times activity of unprotected protease, respectively. Starch did not protect amylase activity in monogastric animal total tract simulation. Protection of mixed enzymes by substrates in two animal total tract simulation tests showed that filter paper in combination with soybean protein resulted in 1.5 times activity of unprotected cellulose, but all substrates tested showed no significant protection effect to protease. Soybean protein and starch added at the same time protected the amylase activity to be two times of the unprotected one. Test of non-purified substrate protection in two animal total digest tract simulation showed that cellulase activity increased as BSA (bovine serum albumin) concentration increased, with the highest activity to be 1.3 times of unprotected enzyme. However, BSA showed no significant protection effect to protease. Amylase activity increased to 1.5 times as BSA added more than 1.5% (w/v). Cellulase activity increased to 1.5 times as soybean hull was added higher than 1.5%. Amylase had a significant protection response only when soybean hull added up to 2%. Protease activity was not protected by soybean hull to any significant extent.

Metabolic, Osmoregulatory and Nutritional Functions of Betaine in Monogastric Animals

  • Ratriyanto, A.;Mosenthin, R.;Bauer, E.;Eklund, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권10호
    • /
    • pp.1461-1476
    • /
    • 2009
  • This review focuses on the metabolic and osmoregulatory functions of betaine and its impact on nutrient digestibility and performance in pigs and poultry. Betaine is the trimethyl derivative of the amino acid glycine, and is present in plant and animal tissue. It has been shown to play an important role in osmoregulation of plants, bacteria and marine organisms. Due to its chemical structure, betaine exerts a number of functions both at the gastrointestinal and metabolic level. As a methyl group donor, betaine is involved in transmethylation reactions and donates its labile methyl group for the synthesis of several metabolically active substances such as creatine and carnitine. Therefore, supplementation of betaine may reduce the requirement for other methyl group donors such as methionine and choline. Beneficial effects on intestinal cells and intestinal microbes have been reported following betaine supplementation to diets for pigs and poultry, which have been attributed to the osmotic properties of betaine. Furthermore, betaine potentially enhances the digestibility of specific nutrients, in particular fiber and minerals. Moreover, at the metabolic level, betaine is involved in protein and energy metabolism. Growth trials revealed positive effects of supplemental betaine on growth performance in pigs and poultry, and there is evidence that betaine acts as a carcass modifier by reducing the carcass fat content. In conclusion, due to its various metabolic and osmoregulatory functions, betaine plays an important role in the nutrition of monogastric animals.

Improving the Nutritive Value of Full-Fat Rice Bran for Broiler Chickens Using a Lipase-Based Enzyme Preparation

  • Tan, S.H.;Thomas, D.V.;Camden, B.J.;Kadim, I.T.;Morel, P.C.H.;Pluske, J.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제13권3호
    • /
    • pp.360-368
    • /
    • 2000
  • Two experiments were conducted to test the hypothesis that a lipase-based enzyme preparation would increase the AME content of full-fat rice bran (FFRB) by increasing fat digestibility when fed to broiler chickens. Experiment 1 used FFRB from Australia and lasted for 35 days, while Experiment 2 used FFRB from Thailand and lasted for 14 days. Rice bran was substituted in a maize-soybean diet at levels of 90 g/kg (Experiment 1) and at 90 and 180 g/kg in Experiment 2. Total collections of excreta were used for determination of AME content and fat digestibility. In Experiment 1, the enzyme increased the AME content of FFRB between days 4-7, 18-21 and 32-35 by 6.1-16.1% (p>0.05), however this was not associated with improved fat digestibility. In Experiment 2, the enzyme enhanced the AME content of FFRB between days 4-7 (10.42 vs. 9.06, p=0.107) and 11-14 (11.94 vs. 9.93, p=0.041), but again, this was not caused by increased fat digestibility. Inclusion of 180 g/kg depressed the AME content of FFRB by 7.4-11.5% (p>0.10) in conjunction with decreased (p<0.05) fat digestibility between 0-14 days of age. Improvements in bird growth with the enzyme were seen in Experiment 2 but not in Experiment 1. Increases in AME content of FFRB per se were not caused by enhanced fat digestibility, suggesting that the side activities associated with the preparation must have acted singularly or in combination to improve AME content and bird performance. These data show that the response of FFRB to the lipase-based enzyme preparation was dependent upon the geographical origin of the rice bran and the level of FFRB substituted in the basal diet.

Importance of micronutrients in bone health of monogastric animals and techniques to improve the bioavailability of micronutrient supplements - A review

  • Upadhaya, Santi Devi;Kim, In Ho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권12호
    • /
    • pp.1885-1895
    • /
    • 2020
  • Vitamins and minerals categorized as micronutrients are the essential components of animal feed for maintaining health and improving immunity. Micronutrients are important bioactive molecules and cofactors of enzymes as well. Besides being cofactors for enzymes, some vitamins such as the fat-soluble vitamins, vitamin A and D have been shown to exhibit hormone-like functions. Although they are required in small amount, they play an influential role in the proper functioning of a number of enzymes which are involved in many metabolic, biochemical and physiological processes that contribute to growth, production and health. Micronutrients can potentially have a positive impact on bone health, preventing bone loss and fractures, decreasing bone resorption and increasing bone formation. Thus, micronutrients must be provided to livestock in optimal concentrations and according to requirements that change during the rapid growth and development of the animal and the production cycle. The supply of nutrients to the animal body not only depends on the amount of the nutrient in a food, but also on its bioavailability. The bioavailability of these micronutrients is affected by several factors. Therefore, several technologies such as nanoparticle, encapsulation, and chelation have been developed to improve the bioavailability of micronutrients associated with bone health. The intention of this review is to provide an updated overview of the importance of micronutrients on bone health and methods applied to improve their bioavailability.

Recent Advances in Animal Feed Additives such as Metabolic Modifiers, Antimicrobial Agents, Probiotics, Enzymes and Highly Available Minerals - Review -

  • Wenk, C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제13권1호
    • /
    • pp.86-95
    • /
    • 2000
  • Animal feed additives are used worldwide for many different reasons. Some help to cover the needs of essential nutrients and others to increase growth performance, feed intake and therefore optimize feed utilization. They can positively effect technological properties and product quality. The health status of animals with a high growth performance is a predominant argument in the choice of feed additives. In many countries the use of feed additives is more and more questioned by the consumers: substances such as antibiotics and $\beta$-agonists with expected high risks are banned in animal diets. Therefore, the feed industry is highly interested in valuable alternatives which could be accepted by the consumers. Probiotics, prebiotics, enzymes and highly available minerals as well as herbs can be seen as alternatives to metabolic modifiers and antibiotics.