• Title/Summary/Keyword: Monteath

Search Result 6, Processing Time 0.019 seconds

A Study on the Field Strength Prediction of a Ground-wave Based Time Broadcasting Transmitter Station in the Korean Peninsula

  • Lee, Sun Yong;Choi, Yun Sub;Hwang, Sang-Wook;Yang, Sung-Hoon;Lee, Chang-Bok;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.3 no.2
    • /
    • pp.83-90
    • /
    • 2014
  • In this study, to improve an existing ground-wave based time broadcasting system, a study that predicts the field distribution and field strength of the transmitted signal of a new ground-wave based time broadcasting system was performed. The prediction area was assumed to be the Korean peninsula; and to reflect the mountainous terrain of the Korean peninsula in the prediction of the variations of field distribution and field strength, a new prediction method based on the Monteath model was proposed and utilized. As field distribution changes depending on the position of a transmitter station, potential sites for the transmitter station were selected considering the geographical characteristics. In this regard, the ground conductivity information of North Korea cannot be obtained, and thus, the ground conductivity of the North Korean region was reflected considering the geological characteristics of South Korea and North Korea. Based on this, the variations of field distribution and field strength were predicted by setting the Korean peninsula as the prediction area, and the prediction results depending on the position of the transmitter station were discussed.

Implementation of Propagation delay estimation model of medium frequency for positioning (측위 적용을 위한 중파의 전파 지연 예측 모델 구현)

  • Yu, Dong-Hui
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.2
    • /
    • pp.111-118
    • /
    • 2009
  • Against Anomaly of GPS, there are several projects of independent satellite navigation systems like Galileo of Europe and QZSS of Japan and modernization of terrestrial navigation system like Loran. In domestic, the need of independent navigation system was proposed and DGPS signal was nominated as the possible substitute. The DGPS signal uses medium frequency, which travels through the surface and cause the additional delay rather than the speed of light according to Conductivities and elevations of the irregular terrain. The similar approach is Locan-C. Loran-C has been widely used as the maritime location system. Loran-C uses the ASF estimation method and provides more precise positioning. However there was rarely research on this area in Korea Therefore, we introduce the legacy guaranteed model of additional delay(ASF) and present the results of implementation. With the comparison of the original Monteath results and BALOR results respectively, we guarantee that the implementation is absolutely perfect. For further works, we're going to apply the ASF estimation model to Korean DGPS system with the Korean terrain data.

Comparison of Predicted and Measured ASF (ASF 예측치와 실측치 비교)

  • Shin, Mi-Young;Hwang, Sang-Wook;Yu, Dong-Hui;Park, Chan-Sik;Lee, Chang-Bok;Lee, Sang-Jeong
    • Journal of Navigation and Port Research
    • /
    • v.34 no.3
    • /
    • pp.175-180
    • /
    • 2010
  • In the almost application parts, GNSS being used the primary navigation system on world-widely. However, some of nations attempt or deliberate to enhance current Loran system, as a backup to satellite navigation system because of the vulnerability to the disturbance signal. Loran interests in supplemental navigation system by the development and enhancement, which is called eLoran, and that consists of advancement of receiver and transmitter and of differential Loran in order to increase the accuracy of current Loran-C. A significant factor limiting the ranging accuracy of the eLoran signal is the ASF in the TOAs observed by the receiver. The ASF is mostly due to the fact that the ground-wave signal is likely to propagate over paths of varying conductivity and topography. This paper presents comparison results between the predicted ASF and the measured ASF in a southern east region of Korea. For predicting ASF, the Monteath model is used. Actual ASF is measured from the legacy Loran signal transmitted Pohang station in the GRI 9930 chain. The test results showed the repeatability of the measured ASF and the consistent characteristics between the predicted and the measured ASF values.

A generation method of ASF mapping by the predicted ASF with the measured one in the Yeongil Bay (ASF 예측모델과 실측치를 이용한 영일만 해상 ASF 맵 생성기법)

  • Hwang, Sang-Wook;Shin, Mi Young;Choi, Yun Sub;Yu, Donghui;Park, Chansik;Yang, Sung-Hoon;Lee, Chang-Bok;Lee, Sang Jeong
    • Journal of Navigation and Port Research
    • /
    • v.37 no.4
    • /
    • pp.375-381
    • /
    • 2013
  • In order to establish eLoran system it needs the betterment of a receiver and a transmitter, the add of data channel to loran pulse for loran system information and the differential Loran for compensating Loran-c signal. Precise ASF database map is essential if the Loran delivers the high absolute accuracy of navigation demanded at maritime harbor entrance. In this study we developed the ASF mapping method using predicted ASFs compensated by the measured ASFs for maritime in the harbor. Actual ASF is measured by the legacy Loran signal transmitted from Pohang station in the GRI 9930 chain. We measured absolute propagation delay between the Pohang transmitting station and the measurement points by comparing with the cesium clock for the calculation of the ASFs. Monteath model was used for the irregular terrain along the propagation path in the Yeongil Bay. We measured the actual ASFs at the 12 measurement points over the Yeongil Bay. In our ASF-mapping method we estimated that the each offsets between the predicted and the measured ASFs at the 12 spaced points in the Yeongil. We obtained the ASF map by adjusting the predicted ASF results to fit the measured ASFs over Yeungil bay.

Propagation Delay Modeling and Implementation of DGPS beacon signal over the Spherical Earth

  • Yu, Dong-Hui;Weon, Sung-Hyun
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.4
    • /
    • pp.295-299
    • /
    • 2007
  • This paper presents the ASF(Additional Secondary Factor) modeling of DGPS beacon signal. In addition to DGPS's original purpose, the feasibility to utilize DGPS system for timing and navigation has been studied. For timing and navigation, the positioning system must know the accurate time delay of signal traveling from the transmitter to receiver. Then the delay can be used to compute the user position. The DGPS beacon signal transmits the data using medium frequency, which travels through the surface and cause the additional delay rather than the speed of light according to conductivities and elevations of the irregular terrain. We introduce the modeling of additional delay(ASF) and present the results of implementation. The similar approach is Locan-C. Loran-C has been widely used as the maritime location system and was enhanced to E-Loran(Enhanced Loran). E-Loran system uses the ASF estimation method and is able to provide the more precise location service. However there was rarely research on this area in Korea. Hence, we introduce the ASF and its estimation model. With the comparison of the same condition and data from the original Monteath model and ASF estimation data of Loran system respectively, we guarantee that the implementation is absolutely perfect. For further works, we're going to apply the ASF estimation model to Korean DGPS beacon system with the Korean terrain data.

LORAN-C using and Position error improvement against being unable to use the Global Positioning System(GPS) (위성항법시스템(GPS)의 이용불능을 대비한 LORAN-C 활용과 위치오차 개선)

  • Goo, Ja-Heon;Kang, Gwang-Won;An, Young-Eun;Han, Seung-Jo;Park, Jong-An
    • Journal of Advanced Navigation Technology
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 2007
  • Loran-C of ground transmitting station base that can prevent confusion of country navigation system and give BACK-UP function about electric wave navigation comparing utilization incapability state about GPS(Global Positioning System) infra that user is spreading rapidly over our society whole such as sea/aviation safety, vehicles navigation, minuteness agriculture, minuteness measurement in this treatise practical use of Loran-C navigation propose. Executed ASF(Additional Secondary Phase Factor) production and an application experiment Loran-C by location error improvement way to enhance practical use value. By the result Loran-C in conclusion that can improve location error 100~400m remarkably by 10~65m reach. Also, production extent is latitude when go composition medium and bends cotton at ASF revision table utilization of land area, this smell is judged to be suitable hardness 10 minutes. And notable location error improvement and numeric of GPS BACK-UP function are judged to be possible at a ASF revision table application to Korea Peninsula whole area hereafter.

  • PDF