• Title/Summary/Keyword: Mouse Spinal Sensory Neuron

Search Result 6, Processing Time 0.027 seconds

Effects of Jingansikpung-tang Water Extract on LDH Activity of Cultured Spinal Sensory Neurons Damaged by GO (진간식풍탕 전탕액이 GO에 의해 손상된 배양 척수감각신경세포의 LDH 활성도에 미치는 영향)

  • Park Kwang Su;Kwon Kang Beam;Seong Eun Kyung;Song Yong Sun;Ryu Do Gon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.3
    • /
    • pp.563-566
    • /
    • 2002
  • To evaluate the effect of Jingansikpung-tang(JST) water extract on cultured mouse spinal sensory neuron which was inhibited by glucose oxidase(GO)-induced cytotoxicity, MTT and LDH activity assay were carried out after the cultured mouse spinal sensory neuron were pre-incubated with various concentrations of JST extract for 3 hours prior to exposure of GO. The results obtained were as follows: GO, a oxygen radical, decreased the survival rate of the cultured mouse spinal sensory neuron cells on MTT assay. JST water extract have efficacy of decreasing LDH activity increasing by GO in cultured mouse spinal sensory neuron. From above the results, it is concluded that JST water extract has marked efficacy as a treatment for the damages caused in the GO-mediated oxidative process.

Effects of Gamibojungikki-tang on Total Protein Synthesis of Cultured Spinal Sensory Neurons Damaged by GLUCOSE OXIDASE (가미보중익기탕이 GLUCOSE OXIDASE에 의해 손상된 배양 척수감각신경세포의 총단백질 합성량에 미치는 영향)

  • Ho Lee Chang;Beam Kwon Kang;Ho Jang Seung;Sun Song Yong;Gon Ryu Do
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.1
    • /
    • pp.141-145
    • /
    • 2002
  • In order to clarify the neuroprotective effect of Gamibojungikki-tang (GBJIKT) water extract on cultured mouse spinal sensory neuron damaged by glucose Oxidase (GO), MTT [3-(4,5-dimethylthiazole-2-yl) -2,5-diphenyltetrazolium bromide] assay and SRB (Sulforhodamine B) assay were carried out after the cultured mouse spinal sensory neuron were preincubated with various concentrations of GBJIKT water extract for 3 hours prior to exposure of GO. Cell viability of cultured mouse spinal sensory neurons exposed to various concentrations of GO for 8 hours was decreased in a dose-dependent manner. MTT50 values were 45 mU/ml GO. Cultured mouse spinal sensory neurons in the medium containing various concentration of GO for 8 hours showed decreasing of total protein synthesis. GO was toxic on cultured spinal sensory neurons. Pretreatment at GBJIKT water extract for 3 hours following GO prevented the GO-induced neurotoxicity such as decreasing of total protein synthesis. These results suggest that GO shows toxic effect on cultured spinal sensory neurons and GBJIKT water extract is highly effective in proecting the neurotoxicity induced by GO.

Effects of Gamibojungikki-tang on LDH activity of Cultured Spinal Sensory Neurons (가미보중익기탕이 배양 척수감각신경세포의 LDH 활성도에 미치는 영향)

  • Lee Chang Ha;Kwan Kang Beam;Park Jun Su;Song Yang Sun;Ryu Do Gen
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.2
    • /
    • pp.343-347
    • /
    • 2002
  • In order to darify the neuroprotective effect of Gamibojungikki-tang(GBJIKT) water extract on cultured mouse spinal sensory neuron damaged by glucose Oxidase (GO), NR (Neutral Red) assay and LDH (Lactate Dehydrogenase) activity assay were carried out after the cultured mouse spinal sensory neuron were preincubated with various concentrations of GBJIKT water extract for 3 hours prior to exposure of GO. Cell viability of cultured mouse spinal sensory neurons exposed to various concentrations of GO for 8 hours was decreased in a dose-dependent manner. NR/sub 50/ values were 50 mU/ml GO. Cultured mouse spinal sensory neurons in the medium containing various concentration of GO for 8 hours showed increasing of LDH activity. We knew that GO was toxic on cultured spinal sensory neurons. Pretreatment of GBJIKT water extract for 3 hours following GO prevented the GO-induced neurotoxicity such as increasing of LDH activity. These results suggest that GO shows toxic effect on cultured spinal sensory neurons and GBJIKT water extract is highly effective in proecting the neurotoxicity induced by GO.

Effects of Baepungtang water extract on Cultured Spinal Sensory neurons Damaged by Xanthine Oxidase/Hypoxanthine (배풍탕(排風湯) 전탕액(煎湯液)이 XO/HX에 의해 손상(損傷)된 배양(培養) 척수감각신경세포(脊髓感覺神經細胞)에 미치는 효과(效果))

  • Yu Jin-Deok;Yun Yong-Gap
    • Herbal Formula Science
    • /
    • v.8 no.1
    • /
    • pp.319-328
    • /
    • 2000
  • To evaluate the effect of Baepungtang(BPT) water extract on cultured mouse spinal sensory neuron which was inhibited by xanthine oxidase(XO) and hypoxanthine(HX)-induced oxigen radicals, MTT assay, NR assay, Neurofilament enzymeimmuno assay and LDH activity assay were carried out after the cultured mouse spinal sensory neuron were preincubated with various concentrations of BPT water extract for 3 hours prior to exposure of XO/HX. The results obtained were as follows: 1. XO/HX, a oxigen radical, decreased the survival rate of the cultured mouse spinal sensory neuron cell on NR assay and MTT assay. 2. $MTT_{50}$ value and $NR_{50}$ value of XO/HX were 30 mU/ml XO/O.2 mM HX. 3. BPT water extract have efficacy of increasing neurofilament. 4. BPT water extract have efficacy of increasing LDH activity. From above the results, It is concluded that BPT has marked efficacy as a treatment for the damages caused in the XO/HX-mediated oxidative process.

  • PDF

Effects of Yuldahansotang water extract on Cultured Spinal Sensory Neurons Damaged by Xanthine Oxidase/Hypoxanthine (열다한소탕(熱多寒少湯) 전탕액(煎湯液)이 XO/HX에 의해 손상(損傷)된 배양척수감각신경세포(培養脊髓感覺神經細胞) 미치는 효과(效果))

  • Hong, Jeong-a;Kim, Kyung-yo;Yu, Do-gon;Park, Hye-sun;Kim, Hyung-soon
    • Journal of Sasang Constitutional Medicine
    • /
    • v.13 no.1
    • /
    • pp.88-96
    • /
    • 2001
  • To evaluate the effect of Yuldahansotang(YHT) water extract on cultuted mouse spinal sensory neuron which was inhibited by xanthine oxidase(XO) and hypoxanthine(HX)-induced oxigen radicals, MIT assay, NR assay, Neurofilament enzymeimmuno assay and LDH activity assay were carried our after the cultured mouse spinal sensory neuron were preincubated with various concentrations of YHT water extract for 3 hours prior to exposure of XO/HX. The results obtained were as follows: 1. XO/HX, a oxigen radical, decreased the survival rate of the cultured mouse spinal sensory neuron cells on NR assay and MTT assay. 2. MTT50 value and NR50 value pf XO/HX were 20 mU/ml XO/0.2 mM HX and 40 mU/ml XO/0.2 mM HX. 3. YHT water extract have efficacy of increasing neurofilament. 4. YHT water extract have efficacy of increasing LDH activity. From above the results, It is concluded that YHT has marked efficacy as a treatment for the damages caused in the XO/HX-mediated oxidative process.

  • PDF

The Study on Regenerative Effects of Ginseng on Injured Axonal and Non-Neuronal cell

  • Lim, Chang-Bum;Oh, Min-Seok
    • The Journal of Korean Medicine
    • /
    • v.29 no.5
    • /
    • pp.14-28
    • /
    • 2008
  • Objective : This study was carried out to understand effects of ginseng(hearinafter ; GS, Panax Ginseng) extract on regeneration responses on injured sciatic nerves in rats. Methods :Using white mouse, we damaged sciatic nerve & central nerve, and then applied GS to the lesion. Then we observed regeneration of axon and non-neuron. Results : 1. NF-200 protein immunostaining for the visualization of axons showed more distal elongation of sciatic nerve axons in GS-treated group than saline-treated control 3 and 7 days after crush injury. 2. GAP-43 protein was increased in the injured sciatic nerve and further increased by GS treatment. Enhanced GAP-43 protein signals were also observed in DRG prepared from the rats given nerve injury and GS treatment. 3. GS treatment in vivo induced enhanced neurite outgrowth in preconditioned DRG sensory neurons. In vitro treatment of GS on sensory neurons from intact DRG also caused increased neurite outgrowth. 4. Phospho-Erk1/2 protein levels were higher in the injured nerve treated with GS than saline. Phospho-Erk1/2 protein signals were mostly found in the axons in the injured nerve. 5. NGF and Cdc2 protein levels showed slight increases in the injured nerves of GS-treated group compared to saline-treated group. 6. The number of Schwann cell population was significantly increased by GS treatment in the injured sciatic nerve. GS treatment with cultured Schwann cells increased proliferation and Cdc2 protein signals. 7. GS pretreatment into the injured spinal cord generated increased astrocyte proliferation and oligodendrocytes in culture. In vitro treatment of GS resulted in more differentiated pericytoplasmic processes compared with saline treatment. 8. More arborization around the injury cavity and the occurrence at the caudal region of CST axons were observed in GS-treated group than in saline-treated group. Conclusion :GS extract may have the growth-promoting activity on regenerating axons in both peripheral and central nervous systems.

  • PDF