• 제목/요약/키워드: Mouse vessels

검색결과 49건 처리시간 0.028초

Isolation and In Vitro Culture of Vascular Endothelial Cells from Mice

  • Choi, Shinkyu;Kim, Ji Aee;Kim, Kwan Chang;Suh, Suk Hyo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제19권1호
    • /
    • pp.35-42
    • /
    • 2015
  • In cardiovascular disorders, understanding of endothelial cell (EC) function is essential to elucidate the disease mechanism. Although the mouse model has many advantages for in vivo and in vitro research, efficient procedures for the isolation and propagation of primary mouse EC have been problematic. We describe a high yield process for isolation and in vitro culture of primary EC from mouse arteries (aorta, braches of superior mesenteric artery, and cerebral arteries from the circle of Willis). Mouse arteries were carefully dissected without damage under a light microscope, and small pieces of the vessels were transferred on/in a Matrigel matrix enriched with endothelial growth supplement. Primary cells that proliferated in Matrigel were propagated in advanced DMEM with fetal calf serum or platelet-derived serum, EC growth supplement, and heparin. To improve the purity of the cell culture, we applied shearing stress and anti-fibroblast antibody. EC were characterized by a monolayer cobble stone appearance, positive staining with acetylated low density lipoprotein labeled with 1,1'-dioctadecyl-3,3,3',3'-tetramethyl-indocarbocyanine perchlorate, RT-PCR using primers for von-Willebrand factor, and determination of the protein level endothelial nitric oxide synthase. Our simple, efficient method would facilitate in vitro functional investigations of EC from mouse vessels.

쥐 뇌의 고해상도 이미지에서 임계화 기법을 활용한 뇌혈관 네트워크 분석 및 3D 재현 (Analysis and 3D Reconstruction of a Cerebral Vascular Network Using Image Threshold Techniques in High-resolution Images of the Mouse Brain)

  • 이준석
    • 한국멀티미디어학회논문지
    • /
    • 제22권9호
    • /
    • pp.992-999
    • /
    • 2019
  • In this paper, I lay the foundation for creating a multiscale atlas that characterizes cerebrovasculature structural changes across the entire brain of a mouse in the Knife-Edge Scanning Microscopy dataset. The geometric reconstruction of the vascular filaments embedded in the volume imaging dataset provides the ability to distinguish cerebral vessels by diameter and other morphological properties across the whole mouse brain. This paper presents a means for studying local variations in the small vascular morphology that have a significant impact on the peripheral nervous system in other cerebral areas, as well as the robust and vulnerable side of the cerebrovasculature system across the large blood vessels. I expect that this foundation will prove invaluable towards data-driven, quantitative investigations into the system-level architectural layout of the cerebrovasculature and surrounding cerebral microstructures.

A Tale of Two Models: Mouse and Zebrafish as Complementary Models for Lymphatic Studies

  • Kim, Jun-Dae;Jin, Suk-Won
    • Molecules and Cells
    • /
    • 제37권7호
    • /
    • pp.503-510
    • /
    • 2014
  • Lymphatic vessels provide essential roles in maintaining fluid homeostasis and lipid absorption. Dysfunctions of the lymphatic vessels lead to debilitating pathological conditions, collectively known as lymphedema. In addition, lymphatic vessels are a critical moderator for the onset and progression of diverse human diseases including metastatic cancer and obesity. Despite their clinical importance, there is no currently effective pharmacological therapy to regulate functions of lymphatic vessels. Recent efforts to manipulate the Vascular Endothelial Growth Factor-C (VEGFC) pathway, which is arguably the most important signaling pathway regulating lymphatic endothelial cells, to alleviate lymphedema yielded largely mixed results, necessitating identification of new targetable signaling pathways for therapeutic intervention for lymphedema. Zebrafish, a relatively new model system to investigate lymphatic biology, appears to be an ideal model to identify novel therapeutic targets for lymphatic biology. In this review, we will provide an overview of our current understanding of the lymphatic vessels in vertebrates, and discuss zebrafish as a promising in vivo model to study lymphatic vessels.

Changes in Reproductive Function and White Blood Cell Proliferation Induced in Mice by Injection of a Prolactin-expressing Plasmid into Muscle

  • Lee, Jung-Sun;Yun, Bo-Young;Kim, Sang-Soo;Cho, Chunghee;Yoon, Yong-Dal;Cho, Byung-Nam
    • Molecules and Cells
    • /
    • 제22권2호
    • /
    • pp.189-197
    • /
    • 2006
  • Prolactin (PRL) is a pituitary hormone involved in various physiological processes, including lactation, mammary development, and immune function. To further investigate the in vivo and comparative endocrine roles of PRL, mouse PRL cDNA fused to the cytomegalovirus promoter, was introduced into muscle by direct injection. Previously we studied the function of rat PRL using the same protocol. PRL mRNA was detected in the muscle following injection by RT-PCR and subsequent Southern blot analysis. PRL was also detected and Western blot analysis revealed a relatively high level of serum PRL. In the pCMV-mPRL-injected female mice, the estrous cycle was extended, especially in diestrus stage and the uterus thickening that was shown in normal estrous stage was not observed. In the pCMV-mPRL-injected male mice, new blood vessels were first found at 5 weeks of age and fully developed blood vessels were found after 8 weeks in the testis. The number of Leydig cells increased within the testis and the testosterone level in serum was observed high. Finally, the number of white blood cells (WBCs) increased in the pCMV-mPRL-injected mice. The augmentation of WBCs persisted for at least 20 days after injection. When injection was combined with adrenalectomy, there was an even greater increase in number of WBCs, especially lymphocytes. This increase was returned normal by treatment with dexamethansone. Taken together, our data reveal that intramuscularly expressed mouse PRL influences reproductive functions in female, induces formation of new blood vessels in the testis, and augments WBC numbers. Of notice is that the Leydig cell proliferation with increased testosterone was conspicuously observed in the pCMV-mPRL-injected mice. These results also suggest subtle difference in function of PRL between mouse and rat species.

3차원 골격곡선을 이용한 가상혈관 탐색 방안 (Virtual Navigation of Blood Vessels using 3D Curve-Skeletons)

  • 박상진;박형준
    • 한국CDE학회논문집
    • /
    • 제22권1호
    • /
    • pp.89-99
    • /
    • 2017
  • In order to make a virtual endoscopy system effective for exploring the interior of the 3D model of a human organ, it is necessary to generate an accurate navigation path located inside the 3D model and to obtain consistent camera position and pose estimation along the path. In this paper, we propose an approach to virtual navigation of blood vessels, which makes proper use of orthogonal contours and skeleton curves. The approach generates the orthogonal contours and the skeleton curves from the 3D mesh model and its voxel model, all of which represent the blood vessels. For a navigation zone specified by two nodes on the skeleton curves, it computes the shortest path between the two nodes, estimates the positions and poses of a virtual camera at the nodes in the navigation zone, and interpolates the positions and poses to make the camera move smoothly along the path. In addition to keyboard and mouse input, intuitive hand gestures determined by the Leap Motion SDK are used as user interface for virtual navigation of the blood vessels. The proposed approach provides easy and accurate means for the user to examine the interior of 3D blood vessels without any collisions between the camera and their surface. With a simple user study, we present illustrative examples of applying the approach to 3D mesh models of various blood vessels in order to show its quality and usefulness.

Visualizing the Peripheral Primo Vascular System in Mice Skin by Using the Polymer Mercox

  • Stefanov, Miroslav;Kim, Jungdae
    • 대한약침학회지
    • /
    • 제18권3호
    • /
    • pp.75-79
    • /
    • 2015
  • Objectives: As the peripheral part of the primo vascular system (PVS) is difficult to visualize, we used a vascular casting material Mercox injected directly into the skin to take advantage of a simple procedure to visualize PVS structures as primo vessels (PVs) and primo nodes (PNs) in the skin. Methods: Two colors of the polymer Mercox were injected into mouse skin. After a partial maceration of the whole body with potassium hydroperoxide solution, we anatomized it under a stereomicroscope to trace the Mercox that had been injected into the PVS. Results: Injection of Mercox directly into the skin allowed the PVs and the PNs to be visualized. This approach can fill the PVS when the material is ejected out of the PVs or PNs. The shapes, sizes, and topographic positions of the nodes and the vessels are the hallmarks used to identify the PVS in skin when Mercox is used as a tracer. Conclusion: The direct injection of the casting material Mercox into skin, with modified partial maceration procedures, is a promising method for visualizing the PVs and the PNs in the peripheral part of the PVS in skin. The polymer Mercox can penetrate through the primo pores of the primo vascular wall and fill the PVs and the PNs. The data prove that PVs and PNs exist on the hypodermal layer of the skin.

생쥐 무릎관절 공간 발생에 있어 아포프토시스 세포에 관한 면역전자현미경적 연구 (An Immune-Electron Microscopic Study of the Apoptotic Cell during Mouse Knee Joint Development)

  • 채희선;김경용;이원복;임형수;황덕호;장가용
    • Applied Microscopy
    • /
    • 제28권1호
    • /
    • pp.107-119
    • /
    • 1998
  • This study was designed to investigate the appearence and the characteristics of the apoptotic cells and the process of the joint cavity formation in mouse knee joint. Fetal mouse knee joints from 15 to 19 days of gestation were used. Paraffin-embedded serial sections, stained with H & E for light microscopic observation, Epon 812 embedded thin sections for electron microscopic observation and Lowicryl HM 20 embedded thin sections for immune-electron microscopic observation were prepared. Monoclonal antibodies to $\beta-tubulin$ and polyclonal antibodies to tissue transglutaminase were used for immune-electron microscopic study. The results obtained were as follows. 1. At 15 days of gestation, blood vessels, which have invaded in the mesenchymal cells, were present in the synovium, to form the joint cavity in the future. 2. At 16 days of gestation, the joint cleft was first appeared and several RBCs were present in the joint cleft. The invasion of blood vessels into the joint cleft was continuing, and apoptotic cells were present in the inner cell layer, adjacent to the joint cleft. Necrotic cells were also present in the outer cell layer; they were present 18 days of gestation, but apoptotic cells did not appear after 17 days of gestation. 3. In the apoptotic cells, transglutaminase were localized around vacuoles and the marginal site of the cytoplasm. 4. In the apoptotic cells, tubulin was around the endoplasmic reticulum and the marginal site of the cytoplasm. In the late stage of apoptotic cells, tubulin was localized diffusely in the cytoplasm. Tubulin was also strongly labeled around in the cytoplasm of the neighboring cell at which the apoptotic body was phagocytosed. Tubulin labeled particles were apparently increased in the seperated apoptotic bodies. On the basis of the above findings, it is proposed that during the development of the mouse knee joint, blood vessel invasion first occurs and then apoptosis and cell necrosis follow it. In the apoptotic cell, present in the synovium of the developing knee joint of the mouse. it is suggested that the redistribution of tubulin is associated with apoptotic process. And transglutaminase overexpressed in the apoptotic cell.

  • PDF

Development of an Ex Vivo Model for the Study of Cerebrovascular Function Utilizing Isolated Mouse Olfactory Artery

  • Lee, Hyung-Jin;Dietrich, Hans H.;Han, Byung Hee;Zipfel, Gregory J.
    • Journal of Korean Neurosurgical Society
    • /
    • 제57권1호
    • /
    • pp.1-5
    • /
    • 2015
  • Objective : Cerebral vessels, such as intracerebral perforating arterioles isolated from rat brain, have been widely used as an ex vivo model to study the cerebrovascular function associated with cerebrovascular disorders and the therapeutic effects of various pharmacological agents. These perforating arterioles, however, have demonstrated differences in the vascular architecture and reactivity compared with a larger leptomeningeal artery which has been commonly implicated in cerebrovascular disease. In this study, therefore, we developed the method for studying cerebrovascular function utilizing the olfactory artery isolated from the mouse brain. Methods : The olfactory artery (OA) was isolated from the C57/BL6 wild-type mouse brain. After removing connective tissues, one side of the isolated vessel segment (approximately $-500{\mu}m$ in length) was cannulated and the opposite end of the vessel was completely sealed while being viewed with an inverted microscope. After verifying the absence of pressure leakage, we examined the vascular reactivity to various vasoactive agents under the fixed intravascular pressure (60 mm Hg). Results : We found that the isolated mouse OAs were able to constrict in response to vasoconstrictors, including KCl, phenylephrine, endothelin-1, and prostaglandin $PGH_2$. Moreover, this isolated vessel demonstrated vasodilation in a dose-dependent manner when vasodilatory agents, acetylcholine and bradykinin, were applied. Conclusion : Our findings suggest that the isolated olfactory artery would provide as a useful ex vivo model to study the molecular and cellular mechanisms of vascular function underlying cerebrovascular disorders and the direct effects of such disease-modifying pathways on cerebrovascular function utilizing pharmacological agents and genetically modified mouse models.

Hydrogel and Platelet-Rich Plasma Combined Treatment to Accelerate Wound Healing in a Nude Mouse Model

  • Park, Yu Gil;Lee, In Ho;Park, Eun Soo;Kim, Jin Young
    • Archives of Plastic Surgery
    • /
    • 제44권3호
    • /
    • pp.194-201
    • /
    • 2017
  • Background Platelet-rich plasma (PRP) contains high concentrations of growth factors involved in wound healing. Hydrogel is a 3-dimensional, hydrophilic, high-molecular, reticular substance generally used as a dressing formulation to accelerate wound healing, and also used as a bio-applicable scaffold or vehicle. This study aimed to investigate the effects of PRP and hydrogel on wound healing, in combination and separately, in an animal wound model. Methods A total of 64 wounds, with 2 wounds on the back of each nude mouse, were classified into 4 groups: a control group, a hydrogel-only group, a PRP-only group, and a combined-treatment group. All mice were assessed for changes in wound size and photographed on scheduled dates. The number of blood vessels was measured in all specimens. Immunohistochemical staining was used for the analysis of vascular endothelial growth factor (VEGF) expression. Results Differences in the decrease and change in wound size in the combined-treatment group were more significant than those in the single-treatment groups on days 3, 5, 7, and 10. Analysis of the number of blood vessels through histological examination showed a pattern of increase over time that occurred in all groups, but the combined-treatment group exhibited the greatest increase on days 7 and 14. Immunohistochemical staining showed that VEGF expression in the combined-treatment group exhibited its highest value on day 7. Conclusions This experiment demonstrated improved wound healing using a PRP-hydrogel combined treatment compared to either treatment individually, resulting in a decrease in wound size and a shortening of the healing period.

PLGA Microspheres in Hyaluronic Acid Gel as a Potential Bulking Agent for Urologic and Dermatologic Injection Therapies

  • KANG SUN-WOONG;CHO EUI RI;KIM BYUNG-SOO
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권3호
    • /
    • pp.510-518
    • /
    • 2005
  • In this study, we investigated whether PLGA microspheres in combination with hyaluronic acid (HA) gel have appropriate properties as a bulking agent for urologic injection therapies and whether the implantation of PLGA microspheres and HA gel induces angiogenesis in the newly formed tissues. In order to investigate whether this bulking agent is injectable, this material was injected through 24-gauge needles into the subcutaneous dorsum of the mouse. The bulking agent was easily injected without needle obstruction. Histological analyses of the hybrid tissues at 2 weeks showed that host cells at the surrounding tissues migrated into the spaces between the implanted PLGA microspheres and formed tissue-like structures. An inflammatory response to the implants was mild at 2 weeks and diminished at 8 weeks. Importantly, extensive ingrowth of blood vessels was observed in the hybrid tissues formed by the injection of PLGA microspheres and HA, whereas blood vessels rarely formed in the hybrid tissues formed by the injection of PLGA microspheres only. The implant volume was conserved for almost the entire implantation period. Histological analyses of the distant organs of the bulking agent-implanted animals, such as the lungs, liver, heart, brain, kidney, and spleen, showed no evidence of the injected microsphere migration. These results show that PLGA microspheres in combination with HA possess the appropriate characteristics for a bulking agent for urologic injection therapies and induce extensive blood vessel formation in the hybrid tissues.