• Title/Summary/Keyword: NLRP3

Search Result 74, Processing Time 0.025 seconds

The Inhibitory Effect of NLRP3 Deficiency in Hepatocellular Carcinoma SK-Hep1 Cells

  • Choi, Wonhyeok;Cho, Hyosun
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.4
    • /
    • pp.594-602
    • /
    • 2021
  • The NLRP3 (nucleotide-binding domain, leucine-rich repeat family pyrin domain containing 3) inflammasome plays an important role in the initiation of inflammatory responses, through the recognition of pathogen-associated molecular patterns and tumor progression, including tumor growth and metastasis. In this study, we examined the effects of defective NLRP3 on the growth, migration, and invasiveness of hepatocellular carcinoma (HCC) SK-Hep1 cell. First, HCC SK-Hep1 cells were transfected with human NLRP3 targeting LentiCRISPRv2 vector using the CRISPR-Cas9 system, and NLRP3 deficiency was confirmed by RT-qPCR and western blotting. NLRP3 deficient SK-Hep1 cells showed delayed cell growth and decreased protein expression of PI3K, p-AKT, and pNF-κB when compared to NLRP3 complete SK-Hep1 cells. In addition, NLRP3 deficiency arrested the cell cycle at G1 phase through an increase in p21 and a reduction in CDK6. NLRP3 deficient SK-Hep1 cells also showed significantly delayed cell migration, invasion, and wound healing. The expression of epithelial-mesenchymal transition signaling molecules, such as N-cadherin and MMP-9, was found to be dramatically decreased in NLRP3 deficient SK-Hep1 cells compared to NLRP3 complete SK-Hep1 cells.

Mitophagy: a balance regulator of NLRP3 inflammasome activation

  • Kim, Min-Ji;Yoon, Joo-Heon;Ryu, Ji-Hwan
    • BMB Reports
    • /
    • v.49 no.10
    • /
    • pp.529-535
    • /
    • 2016
  • The NLRP3 inflammasome is activated by a variety of external or host-derived stimuli and its activation initiates an inflammatory response through caspase-1 activation, resulting in inflammatory cytokine IL-1β maturation and secretion. The NLRP3 inflammasome activation is a kind of innate immune response, most likely mediated by myeloid cells acting as a host defense mechanism. However, if this activation is not properly regulated, excessive inflammation induced by overactivated NLRP3 inflammasome can be detrimental to the host, causing tissue damage and organ dysfunction, eventually causing several diseases. Previous studies have suggested that mitochondrial damage may be a cause of NLRP3 inflammasome activation and autophagy, which is a conserved self-degradation process that negatively regulates NLRP3 inflammasome activation. Recently, mitochondria-selective autophagy, termed mitophagy, has emerged as a central player for maintaining mitochondrial homeostasis through the elimination of damaged mitochondria, leading to the prevention of hyperinflammation triggered by NLRP3 inflammasome activation. In this review, we will first focus on the molecular mechanisms of NLRP3 inflammasome activation and NLRP3 inflammasome-related diseases. We will then discuss autophagy, especially mitophagy, as a negative regulator of NLPP3 inflammasome activation by examining recent advances in research.

Suppression of Monosodium Urate-induced NLRP3 Inflammasome Activation by Garlic-derived Sulfur-containing Phytochemicals is Associated with Blocking ROS Generation in RAW 264.7 Macrophages (RAW 264.7 대식세포에서 마늘 유래 황 함유 화합물에 의한 요산 유도 inflammasome 활성화의 억제는 ROS 생성 차단과 연관성이 있음)

  • Min Yeong Kim;Yung Hyun Choi
    • Journal of Life Science
    • /
    • v.33 no.4
    • /
    • pp.349-356
    • /
    • 2023
  • Gout, a chronic inflammatory arthritic disease, is characterized by hyperuricemia. Gout can be induced by an inflammatory response to monosodium urate (MSU) crystals mediated by pro-inflammatory cytokine release following activation of the NOD-like receptor protein 3 (NLRP3) inflammasome. Many sulfur-containing phytochemical compounds in garlic (Allium sativum L.) are considered active ingredients because of their potential pharmacological benefits for various diseases, but their efficacy in NLRP3 inflammasome activation-mediated gout has not been demonstrated. In this study, we investigated whether diallyl disulfide (DADS) and diallyl trisulfide (DATS), representative garlic-derived sulfur compounds, have an inhibitory effect on MSU-induced NLRP3 inflammasome activation. Our results showed that under non-cytotoxic conditions, DADS and DATS significantly blocked nitric oxide production and interleukin (IL)-1β release in response to MSU in lipopolysaccharide (LPS)-primed RAW 264.7 macrophages. DADS and DATS also attenuated enhanced expression of NLRP3 and its adapter protein, apoptosis-associated speck-like protein, which was associated with downregulation of and caspase-1 p20 and IL-1β expression, suggesting that MSU-induced LRP3 inflammasome activation was counteracted by DADS and DATS. Furthermore, DADS and DATS blocked oxidative stress, an upstream event for NLRP3 inflammasome activation, as evidenced by the fact that they scavenged reactive oxygen species (ROS) production. Taken together, our findings demonstrate that DADS and DATS suppressed NLRP3 inflammasome activation by inhibiting the ROS/NLRP3 pathway and that they have potential as treatments for NLRP3-dependent gouty arthritis.

NLRP3 Inflammasome in Neuroinflammatory Disorders (NLRP3 인플라마좀 작용 기전 및 신경 질환에서의 역할)

  • Kim, Ji-Hee;Kim, YoungHee
    • Journal of Life Science
    • /
    • v.31 no.2
    • /
    • pp.237-247
    • /
    • 2021
  • Immune responses in the central nervous system (CNS) function as the host's defense system against pathogens and usually help with repair and regeneration. However, chronic and exaggerated neuroinflammation is detrimental and may create neuronal damage in many cases. The NOD-, LRR-, and pyrin domain―containing 3 (NLRP3) inflammasome, a kind of NOD-like receptor, is a cytosolic multiprotein complex that consists of sensors (NLRP3), adaptors (apoptosis-associated speck like protein containing a caspase recruitment domain, ASC) and effectors (caspase 1). It can detect a broad range of microbial pathogens along with foreign and host-derived danger signals, resulting in the assembly and activation of the NLRP3 inflammasome. Upon activation, NLRP3 inflammasome leads to caspase 1-dependent secretion of the pro-inflammatory cytokines IL-1β and IL-18, as well as to gasdermin D-mediated pyroptotic cell death. NLRP3 inflammasome is highly expressed in CNS-resident cell types, including microglia and astrocytes, and growing evidence suggests that NLRP3 inflammasome is a crucial player in the pathophysiology of several neuroinflammatory and psychiatric diseases, such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, stroke, traumatic brain injury, amyotrophic lateral sclerosis, and major depressive disorder. Thus, this review describes the molecular mechanisms of NLRP3 inflammasome activation and its crucial roles in the pathogenesis of neurological disorders.

Korean Red Ginseng, a regulator of NLRP3 inflammasome, in the COVID-19 pandemic

  • Jung, Eui-Man;Lee, Geun-Shik
    • Journal of Ginseng Research
    • /
    • v.46 no.3
    • /
    • pp.331-336
    • /
    • 2022
  • Coronavirus disease 2019 (COVID-19) exhibits various symptoms, ranging from asymptomatic to severe pneumonia or death. The major features of patients in severe COVID-19 are the dysregulation of cytokine secretion, pneumonia, and acute lung injury. Consequently, it leads to acute respiratory distress syndrome, disseminated intravascular coagulation, multiple organ failure, and death. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative virus of COVID-19, influences nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 3 (NLRP3), the sensor of inflammasomes, directly or indirectly, culminating in the assembly of NLRP3 inflammasome and activation of inflammatory caspases, which induce the inflammatory disruption in severe COVID-19. Accordingly, the target therapeutics for inflammasome has attracted attention as a treatment for COVID-19. Korean Red Ginseng (KRG) inhibits several inflammatory responses, including the NLRP3 inflammasome signaling. This review discusses the role of KRG in the treatment and prevention of COVID-19 based on its anti-NLRP3 inflammasome efficacy.

Role of NLRP3 Inflammasome in Rheumatoid Arthritis (류마티스 관절염에서 NLRP3 인플라마좀의 역할)

  • Hyeon Jin Kim;Soo Hyun Jeong;JunHo Lee;Dae Yong Kim;Gabsik Yang
    • Journal of Convergence Korean Medicine
    • /
    • v.4 no.1
    • /
    • pp.5-11
    • /
    • 2022
  • Objectives: Inflammasomes are molecular platforms that are generated inside cytoplasmic compartments. The objective is to mediate immunological responses of the host to cell damage and infection. Caspase-1 is triggered by inflammasome to generate interleukin-1𝛽 (IL-1𝛽), an inflammatory cytokine, and pyroptosis, an inflammatory form of apoptosis. Methods: In the past two decades, scientists have uncovered several inflammasomes. The most research has been conducted on NLRP3 inflamamsomes, whose activity can be stimulated by a variety of induction factors. However, the unregulated activation of NLRP3 inflammasomes is also a role in the etiology of several human disorders. Previous research has demonstrated that NLRP3 inflammasomes have a significant role in the innate and acquired immune systems, as well as in the prevalence of joint illnesses such rheumatoid arthritis. Conclusion: Within the scope of this review, we will present a brief overview of the biological features of NLRP3 inflamamsomes as well as a description of the underlying mechanisms governing activation and regulation. In particular, we explore the function of inflammasomes in the development of rheumatoid arthritis as well as the promise of recently identified medicines that target inflamasomes.

Inflammasomes: Molecular Regulation and Implications for Metabolic and Cognitive Diseases

  • Choi, Alexander J.S.;Ryter, Stefan W.
    • Molecules and Cells
    • /
    • v.37 no.6
    • /
    • pp.441-448
    • /
    • 2014
  • Inflammasomes are specialized signaling platforms critical for the regulation of innate immune and inflammatory responses. Various NLR family members (i.e., NLRP1, NLRP3, and IPAF) as well as the PYHIN family member AIM2 can form inflammasome complexes. These multiprotein complexes activate inflammatory caspases (i.e., caspase-1) which in turn catalyze the maturation of select pro-inflammatory cytokines, including interleukin (IL)-$1{\beta}$ and IL-18. Activation of the NLRP3 inflammasome typically requires two initiating signals. Toll-like receptor (TLR) and NOD-like receptor (NLR) agonists activate the transcription of pro-inflammatory cytokine genes through an NF-${\kappa}B$-dependent priming signal. Following exposure to extracellular ATP, stimulation of the P2X purinoreceptor-7 ($P2X_7R$), which results in $K^+$ efflux, is required as a second signal for NLRP3 inflammasome formation. Alternative models for NLRP3 activation involve lysosomal destabilization and phagocytic NADPH oxidase and /or mitochondria-dependent reactive oxygen species (ROS) production. In this review we examine regulatory mechanisms that activate the NLRP3 inflammasome pathway. Furthermore, we discuss the potential roles of NLRP3 in metabolic and cognitive diseases, including obesity, type 2 diabetes mellitus, Alzheimer's disease, and major depressive disorder. Novel therapeutics involving inflammasome activation may result in possible clinical applications in the near future.

Interruption of Helicobacter pylori-Induced NLRP3 Inflammasome Activation by Chalcone Derivatives

  • Choi, Hye Ri;Lim, Hyun;Lee, Ju Hee;Park, Haeil;Kim, Hyun Pyo
    • Biomolecules & Therapeutics
    • /
    • v.29 no.4
    • /
    • pp.410-418
    • /
    • 2021
  • Helicobacter pylori causes chronic gastritis through cag pathogenicity island (cagPAI), vacuolating cytotoxin A (VacA), lipopolysaccharides (LPS), and flagellin as pathogen-related molecular patterns (PAMPs), which, in combination with the pattern recognition receptors (PRRs) of host cells promotes the expression and secretion of inflammation-causing cytokines and activates innate immune responses such as inflammasomes. To identify useful compounds against H. pylori-associated gastric disorders, the effect of chalcone derivatives to activate the nucleotide-binding oligomerization domain (NOD)-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome was examined in an H. pylori-infected human monocytic THP-1 cell line in this study. Among the five synthetic structurally-related chalcone derivatives examined, 2'-hydroxy-4',6'-dimethoxychalcone (8) and 2'-hydroxy-3,4,5-trimethoxychalcone (12) strongly blocked the NLRP3 inflammasome in H. pylori-infected THP-1 cells. At 10 μM, these compounds inhibited the production of active IL-1β, IL-18, and caspase-1, and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) oligomerization, but did not affect the expression levels of NLRP3, ASC, and pro-caspase-1. The interruption of NLRP3 inflammasome activation by these compounds was found to be mediated via the inhibition of the interleukin-1 receptor-associated kinase 4 (IRAK4)/IκBα/NF-κB signaling pathway. These compounds also inhibited caspase-4 production associated with non-canonical NLRP3 inflammasome activation. These results show for the first time that certain chalcones could interrupt the activation of the NLRP3 inflammasome in H. pylori-infected THP-1 cells. Therefore, these chalcones may be helpful in alleviating H. pylori-related inflammatory disorders including chronic gastritis.

Cardamonin Inhibited IL-1β Induced Injury by Inhibition of NLRP3 Inflammasome via Activating Nrf2/NQO-1 Signaling Pathway in Chondrocyte

  • Jiang, Jianqing;Cai, Mingsong
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.6
    • /
    • pp.794-802
    • /
    • 2021
  • In this study we investigated the role and mechanism of cardamonin on IL-1β induced injury in OA. CHON-001 cells were treated with cardamonin and IL-1β and transfected with silencing nuclear factor erythroid 2-related factor 2 (siNrf2). Cell viability was detected by Cell Counting Kit-8 assay and flow cytometer assay was utilized for cell apoptosis assessment. IL-6, IL-8, TNF-α and Nrf2 mRNA expression was tested by qRT-PCR. Western blot was employed to evaluate MMP-3, MMP-13, Collagen II, Nrf2, NQO-1, NLRP3, Caspase 1 and apoptosis-associated speck-like protein containing a caspase-1 recruitment domain (ASC) protein levels. In CHON-001 cells, IL-1β suppressed cell viability and Collagen II level while promoting cell apoptosis and expression of pro-inflammatory cytokines (IL-6, IL-8, TNF-α), MMPs (MMP-3, MMP-13), NQO-1, and NLRP3 inflammasome (NLRP3, Caspase 1 and ASC), with no significant influence on Nrf2. Cardamonin reversed the effect of IL-1β on cell viability, cell apoptosis, pro-inflammatory cytokines, MMPs, Collagen II, and NLRP3 inflammasome levels. In addition, cardamonin advanced Nrf2 and NQO-1 expression of CHON-001 cells. SiNrf2 reversed the function of cardamonin on IL-1β-induced cell apoptosis and expression of pro-inflammatory cytokines, Nrf2, NQO-1, and NLRP3 inflammasome in chondrocytes. Taken together Cardamonin inhibited IL-1β induced injury by inhibition of NLRP3 inflammasome via activating Nrf2/NQO1 signaling pathway in chondrocyte.

Nonsaponin fractions of Korean Red Ginseng extracts prime activation of NLRP3 inflammasome

  • Han, Byung-Cheol;Ahn, Huijeong;Lee, Jiseon;Jeon, Eunsaem;Seo, Sanghoon;Jang, Kyoung Hwa;Lee, Seung-Ho;Kim, Cheon Ho;Lee, Geun-Shik
    • Journal of Ginseng Research
    • /
    • v.41 no.4
    • /
    • pp.513-523
    • /
    • 2017
  • Background: Korean Red Ginseng extracts (RGE) have been suggested as effective immune modulators, and we reported that ginsenosides possess anti-inflammasome properties. However, the properties of nonsaponin components of RGE have not been well studied. Methods: To assess the roles of nonsaponin fractions (NS) in NLRP3 inflammasome activation, we treated murine macrophages with or without first or second inflammasome activation signals with RGE, NS, or saponin fractions (SF). The first signal was nuclear factor kappa-light-chain-enhancer of activated B cells (NF-${\kappa}B$)-mediated transcription of pro-interleukin (IL)-$1{\beta}$ and NLRP3 while the second signal triggered assembly of inflammasome components, leading to IL-$1{\beta}$ maturation. In addition, we examined the role of NS in IL-6 production and IL-$1{\beta}$ maturation in mice. Results: NS induced IL-$1{\beta}$ and NLRP3 transcription via toll-like receptor 4 signaling, whereas SF blocked expression. During the second signal, SF attenuated NLRP3 inflammasome activation while NS did not. Further, NS-injected mice presented increased IL-$1{\beta}$ maturation and IL-6 production. Conclusion: SF and NS of RGE play differential roles in the NLRP3 inflammasome activation. Hence, RGE can be suggested as an NLRP3 inflammasome modulator.