• Title/Summary/Keyword: Negative ramp reset

Search Result 5, Processing Time 0.018 seconds

The new reset pulse used negative ramp slope for improving the addressing characteristic in ac PDP (ac PDP에서 Addressing 특성개선을 위한 Negative Ramp Slope이 적용된 Reset Pulse에 관한 연구)

  • Choi, Hye-Rim;Jung, Sun-Wook;Kang, Jung-Won
    • Journal of the Semiconductor & Display Technology
    • /
    • v.5 no.2 s.15
    • /
    • pp.11-14
    • /
    • 2006
  • A new reset waveform with negative ramp pulse is proposed. Conventional reset waveform applied to the commercial PDP uses a positive ramp pulse. The reset waveforms, especially focused on ramp area, were examined with 2 dimensional fluid code. The proposed negative reset waveform showed much lower ignition voltage ($\sim$70V) as compared with the conventional reset waveform. When the negative ramp pulse was applied, all of the positive-charged ions are collected on the scan electrode. It is found that the ignition voltage of reset discharge due to the negative ramp pulse became lower than that of positive ramp discharge.

  • PDF

ac PDP에서 Addressing 특성개선을 위한 Negative Ramp Slope이 적용된 Reset Pulse에 관한 연구

  • Choe Hye-Rim;Jeong Seon-Uk;Gang Jeong-Won
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2006.05a
    • /
    • pp.139-144
    • /
    • 2006
  • 일반적인 PDP 에 적용된 ADS 방식에서 Reset 파형은 ON/OFF Cell 을 초기화 시켜주고 Wall charge를 쌓아줌으로써 낮은 Address 전압으로도 구동을 가능하게 해준다. 기존의 Reset 파형은 Positive ramp pulse를 이용하여 구현하고 있으나 본 논문은 Negative ramp pulse가 적용된 새로운 Reset 파형을 제안하고자 한다. 2-Dimensional fluid simulation code를 이용하여 Ramp부분에 초점을 맞춰 Reset파형을 분석했으며 제안된 Negative ramp reset 파형은 기존의 Positive ramp reset 파형보다 70V가 낮은 전압에서 방전이 발생되는 것을 확인했다. Negative ramp pulse를 적용됐을 경우, Positive ion들이 모두 Negative ramp pulse가 인가된 Scan전극으로 모이는 현상 때문에 기존 Reset파형에 의한 방전일 때보다 낮은 전압에서의 초기방전을 발생시키므로 Reset에 소요되는 시간과 전압을 감소시킬 수 있다.

  • PDF

Effects of Ramp Type-Common Electrode Bias on Reset Discharge Characteristics in AC-PDP

  • Park, Choon-Sang;Cho, Byung-Gwon;Tae, Heung-Sik
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1258-1261
    • /
    • 2005
  • The ramp type bias voltage applied to the common electrode during a reset-period is newly proposed to lower the background luminance and to improve the address discharge characteristics in AC-PDP. The positive ramp bias voltage is applied during the ramp-up period, whereas the negative ramp bias voltage is applied during the ramp-down period. The effects of the voltage slopes in both the positive and negative ramp bias voltages on the background luminance and address voltage characteristics are examined intensively. It is observed that the optimized positive and negative ramp bias voltages applied to the common electrode during the ramp-period can lower the background luminance and also enhance the address discharge characteristics of the AC-PDP.

  • PDF

Comparative Studies between the Negative Waveform and the Conventional Positive Waveform during Reset Period.

  • Eom, Cheol-Hwan;Lim, Hyun-Muk;Lee, Jun-Young;Kong, Byoung-Goo;Park, Hyun-Il;Moon, Sung-Hak;Kang, Jung-Won
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.388-391
    • /
    • 2008
  • A new reset waveform with negative ramp pulse was proposed. Comparative experiments between the negative and positive waveforms were performed. During reset period, IR distributions and luminance of black and white conditions were measured with the 42-inch XGA PDP module. The negative waveform improved contrast ratio about 15.4 ~ 22.5 % than the positive waveform by lowing the black luminance in reset period. Z bias (= Vbb) of the positive waveform was 27 V higher than the negative waveform.

  • PDF

A Study of Negative Waveform in ac PDP during Reset and Address Periods (ac PDP에서의 Reset과 Address 구간에서 Negative Waveform특성에 관한 연구)

  • Eom, Cheol-Hwan;Kang, Jung-Won
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.1
    • /
    • pp.27-31
    • /
    • 2009
  • A characteristic of new waveform, called a negative waveform, was studied during reset and address periods. IR distribution, black luminance and time delay were measured to compare the negative waveform with the conventional positive waveform. Based on the analysis of IR measurement, the negative waveform could accumulate more wall charges than the positive waveform. Also the black luminance of negative waveform was lower than that of positive waveform under the same bias and ramp-slope conditions. During address period, the discharge time lag was measured. The negative waveform was showed 0.25 us faster formative time lag and 0.1 us faster average time lag than those of positive waveform.

  • PDF