• Title/Summary/Keyword: Neumann problem

Search Result 87, Processing Time 0.029 seconds

EXISTENCE OF A POSITIVE INFIMUM EIGENVALUE FOR THE p(x)-LAPLACIAN NEUMANN PROBLEMS WITH WEIGHTED FUNCTIONS

  • Kim, Yun-Ho
    • Korean Journal of Mathematics
    • /
    • v.22 no.3
    • /
    • pp.395-406
    • /
    • 2014
  • We study the following nonlinear problem $-div(w(x){\mid}{\nabla}u{\mid}^{p(x)-2}{\nabla}u)+{\mid}u{\mid}^{p(x)-2}u={\lambda}f(x,u)$ in ${\Omega}$ which is subject to Neumann boundary condition. Under suitable conditions on w and f, we give the existence of a positive infimum eigenvalue for the p(x)-Laplacian Neumann problem.

ESTIMATES FOR EIGENVALUES OF NEUMANN AND NAVIER PROBLEM

  • Deng, Yanlin;Du, Feng;Hou, Lanbao
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.6
    • /
    • pp.1315-1325
    • /
    • 2021
  • In this paper, we firstly prove some general inequalities for the Neumann eigenvalues for domains contained in a Euclidean n-space ℝn. Using the general inequalities, we can derive some new Neumann eigenvalues estimates which include an upper bound for the (k + 1)th eigenvalue and a new estimate for the gap of the consecutive eigenvalues. Moreover, we give sharp lower bound for the first eigenvalue of two kinds of eigenvalue problems of the biharmonic operator with Navier boundary condition on compact Riemannian manifolds with boundary and positive Ricci curvature.

NOTE ON LOCAL BOUNDEDNESS FOR WEAK SOLUTIONS OF NEUMANN PROBLEM FOR SECOND-ORDER ELLIPTIC EQUATIONS

  • KIM, SEICK
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.2
    • /
    • pp.189-195
    • /
    • 2015
  • The goal of this note is to provide a detailed proof for local boundedness estimate near the boundary for weak solutions for second order elliptic equations with bounded measurable coefficients subject to Neumann boundary condition.

MULTIPLE SOLUTIONS FOR CERTAIN NONLINEAR SECOND-ORDER SYSTEMS

  • Tian, Yu;Ge, Weigao
    • Journal of applied mathematics & informatics
    • /
    • v.25 no.1_2
    • /
    • pp.353-361
    • /
    • 2007
  • In this paper, we prove the existence of multiple solutions for Neumann and periodic problems. Our main tools are recent general multiplicity theorems proposed by B. Ricceri.

ERROR ESTIMATIES FOR A FREQUENCY-DOMAIN FINITE ELEMENT METHOD FOR PARABOLIC PROBLEMS WITH A NEUMANN BOUNDARY CONDITION

  • Lee, Jong-Woo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.345-362
    • /
    • 1998
  • We introduce and anlyze a naturally parallelizable frequency-domain method for parabolic problems with a Neumann boundary condition. After taking the Fourier transformation of given equations in the space-time domain into the space-frequency domain, we solve an indefinite, complex elliptic problem for each frequency. Fourier inversion will then recover the solution of the original problem in the space-time domain. Existence and uniqueness of a solution of the transformed problem corresponding to each frequency is established. Fourier invertibility of the solution in the frequency-domain is also examined. Error estimates for a finite element approximation to solutions fo transformed problems and full error estimates for solving the given problem using a discrete Fourier inverse transform are given.

  • PDF

UNIQUENESS OF IDENTIFYING THE CONVECTION TERM

  • Cheng, Jin;Gen Nakamura;Erkki Somersalo
    • Communications of the Korean Mathematical Society
    • /
    • v.16 no.3
    • /
    • pp.405-413
    • /
    • 2001
  • The inverse boundary value problem for the steady state heat equation with convection term is considered in a simply connected bounded domain with smooth boundary. Taking the Dirichlet to Neumann map which maps the temperature on the boundary to the that flux on the boundary as an observation data, the global uniqueness for identifying the convection term from the Dirichlet to Neumann map is proved.

  • PDF

A NUMERICAL METHOD FOR THE PROBLEM OF COEFFICIENT IDENTIFICATION OF THE WAVE EQUATION BASED ON A LOCAL OBSERVATION ON THE BOUNDARY

  • Shirota, Kenji
    • Communications of the Korean Mathematical Society
    • /
    • v.16 no.3
    • /
    • pp.509-518
    • /
    • 2001
  • The purpose of this paper is to propose a numerical algorithm for the problem of coefficient identification of the scalar wave equation based on a local observation on the boundary: Determine the unknown coefficient function with the knowledge of simultaneous Dirichlet and Neumann boundary values on a part of boundary. To find the unknown coefficient function, the unknown Neumann boundary value is also identified. We recast our inverse problem to variational problem. The gradient method is applied to find the minimizing functions. We confirm the effectiveness of our algorithm by numerical experiments.

  • PDF