• Title/Summary/Keyword: Neumann problems

Search Result 53, Processing Time 0.025 seconds

SERIES SOLUTIONS TO INITIAL-NEUMANN BOUNDARY VALUE PROBLEMS FOR PARABOLIC AND HYPERBOLIC EQUATIONS

  • Bougoffa, Lazhar;Al-Mazmumy, M.
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.1_2
    • /
    • pp.87-97
    • /
    • 2013
  • The purpose of this paper is to employ a new useful technique to solve the initial-Neumann boundary value problems for parabolic, hyperbolic and parabolic-hyperbolic equations and obtain a solution in form of infinite series. The results obtained indicate that this approach is indeed practical and efficient.

An Existence Result for Neumann Type Boundary Value Problems for Second Order Nonlinear Functional Differential Equation

  • Liu, Yuji
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.4
    • /
    • pp.637-650
    • /
    • 2008
  • New sufficient conditions for the existence of at least one solution of Neumann type boundary value problems for second order nonlinear differential equations $$\array{\{{p(t)\phi(x'(t)))'=f(t,x(t),\;x(\tau_1(t)),\;{\cdots},\;x(\tau_m(t))),\;t\in[0,T],\\x'(0)=0,\;x'(T)=0,}\,}$$, are established.

EXISTENCE OF A POSITIVE INFIMUM EIGENVALUE FOR THE p(x)-LAPLACIAN NEUMANN PROBLEMS WITH WEIGHTED FUNCTIONS

  • Kim, Yun-Ho
    • Korean Journal of Mathematics
    • /
    • v.22 no.3
    • /
    • pp.395-406
    • /
    • 2014
  • We study the following nonlinear problem $-div(w(x){\mid}{\nabla}u{\mid}^{p(x)-2}{\nabla}u)+{\mid}u{\mid}^{p(x)-2}u={\lambda}f(x,u)$ in ${\Omega}$ which is subject to Neumann boundary condition. Under suitable conditions on w and f, we give the existence of a positive infimum eigenvalue for the p(x)-Laplacian Neumann problem.

ERROR ESTIMATIES FOR A FREQUENCY-DOMAIN FINITE ELEMENT METHOD FOR PARABOLIC PROBLEMS WITH A NEUMANN BOUNDARY CONDITION

  • Lee, Jong-Woo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.345-362
    • /
    • 1998
  • We introduce and anlyze a naturally parallelizable frequency-domain method for parabolic problems with a Neumann boundary condition. After taking the Fourier transformation of given equations in the space-time domain into the space-frequency domain, we solve an indefinite, complex elliptic problem for each frequency. Fourier inversion will then recover the solution of the original problem in the space-time domain. Existence and uniqueness of a solution of the transformed problem corresponding to each frequency is established. Fourier invertibility of the solution in the frequency-domain is also examined. Error estimates for a finite element approximation to solutions fo transformed problems and full error estimates for solving the given problem using a discrete Fourier inverse transform are given.

  • PDF

Positive Solutions of Nonlinear Neumann Boundary Value Problems with Sign-Changing Green's Function

  • Elsanosi, Mohammed Elnagi M.
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.1
    • /
    • pp.65-71
    • /
    • 2019
  • This paper is concerned with the existence of positive solutions of the nonlinear Neumann boundary value problems $$\{u^{{\prime}{\prime}}+a(t)u={\lambda}b(t)f(u),\;t{\in}(0,1),\\u^{\prime}(0)=u^{\prime}(1)=0$$, where $a,b{\in}C[0,1]$ with $a(t)>0,\;b(t){\geq}0$ and the Green's function of the linear problem $$\{u^{{\prime}{\prime}}+a(t)u=0,\;t{\in}(0,1),\\u^{\prime}(0)=u^{\prime}(1)=0$$ may change its sign on $[0,1]{\times}[0,1]$. Our analysis relies on the Leray-Schauder fixed point theorem.

A comparison of the neumann-kelvin and rankine source methods for wave resistance calculations

  • Yu, Min;Falzarano, Jeffrey
    • Ocean Systems Engineering
    • /
    • v.7 no.4
    • /
    • pp.371-398
    • /
    • 2017
  • Calm water wave resistance plays a very important role in ship hull design. Numerical methods are meaningful for this reason. In this study, two prevailing methods, the Neumann-Kelvin and the Rankine source method, were implemented and compared. The Neumann-Kelvin method assumes linearized free surface boundary condition and only needs to mesh the hull surface. The Rankine source method considers nonlinear free surface boundary condition and meshes both the ship hull surface and free surface. Both methods were implemented and the wave resistance of a Wigley III and three Series 60(Cb=0.6, 0.7, 0.8) hulls were analyzed. The results were compared with experimental results and the merits of both numerical techniques were quantified. Based on the results, it is concluded that the Rankine source method is more accurate in the calculation of the wave-making resistance. Using the Neumann-Kelvin method, it is found to be easier to model the hull and can be used for slender ships to solve problems like wave current coupling calculation.

MULTIPLE SOLUTIONS FOR CERTAIN NONLINEAR SECOND-ORDER SYSTEMS

  • Tian, Yu;Ge, Weigao
    • Journal of applied mathematics & informatics
    • /
    • v.25 no.1_2
    • /
    • pp.353-361
    • /
    • 2007
  • In this paper, we prove the existence of multiple solutions for Neumann and periodic problems. Our main tools are recent general multiplicity theorems proposed by B. Ricceri.

A Composite of FEM and BIM Dealing with Neumann and Dirichlet Boundary Conditions for Open Boundary magnetic Field Problems (개량역 자장간의 해석에 있어서 Neumann 및 Diichlet 경계조건을 고려한 유한요소법 및 경계적분법)

  • 정현교;한송엽
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.11
    • /
    • pp.777-782
    • /
    • 1987
  • A new composite method of finite element and boundary integral methods is presented to solve the two dimensional magnetostatic field problems with open boundary. The method can deal with the current source of the boundary integral regin where the boundary integral method is applied, and also Neumann and Dirichlet boundary conditions at the interfacial boundary between the boundary integral region and the finite element region where the finite element method is applied. The new approach has been applied to a simple linear problem to verify the usefulness. It is shown that the proposed algorithm gives more accurate results than the finite element methed under the same elementdiscretization.

  • PDF

ESTIMATES FOR EIGENVALUES OF NEUMANN AND NAVIER PROBLEM

  • Deng, Yanlin;Du, Feng;Hou, Lanbao
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.6
    • /
    • pp.1315-1325
    • /
    • 2021
  • In this paper, we firstly prove some general inequalities for the Neumann eigenvalues for domains contained in a Euclidean n-space ℝn. Using the general inequalities, we can derive some new Neumann eigenvalues estimates which include an upper bound for the (k + 1)th eigenvalue and a new estimate for the gap of the consecutive eigenvalues. Moreover, we give sharp lower bound for the first eigenvalue of two kinds of eigenvalue problems of the biharmonic operator with Navier boundary condition on compact Riemannian manifolds with boundary and positive Ricci curvature.

BOUNDARY VALUE PROBLEMS FOR NONLINEAR PERTURBATIONS OF VECTOR P-LAPLACIAN-LIKE OPERATORS

  • Manasevich, Raul;Mawhin, Jean
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.5
    • /
    • pp.665-685
    • /
    • 2000
  • The aim of this paper is to obtain nonlinear operators in suitable spaces whise fixed point coincide with the solutions of the nonlinear boundary value problems ($\Phi$($\upsilon$'))'=f(t, u, u'), l(u, u') = 0, where l(u, u')=0 denotes the Dirichlet, Neumann or periodic boundary conditions on [0, T], $\Phi$: N N is a suitable monotone monotone homemorphism and f:[0, T] N N is a Caratheodory function. The special case where $\Phi$(u) is the vector p-Laplacian $\mid$u$\mid$p-2u with p>1, is considered, and the applications deal with asymptotically positive homeogeneous nonlinearities and the Dirichlet problem for generalized Lienard systems.

  • PDF