• Title/Summary/Keyword: Neuroprotective effects

Search Result 594, Processing Time 0.022 seconds

Ginsenoside Rb1 exerts neuroprotective effects through regulation of Lactobacillus helveticus abundance and GABAA receptor expression

  • Chen, Huimin;Shen, Jiajia;Li, Haofeng;Zheng, Xiao;Kang, Dian;Xu, Yangfan;Chen, Chong;Guo, Huimin;Xie, Lin;Wang, Guangji;Liang, Yan
    • Journal of Ginseng Research
    • /
    • v.44 no.1
    • /
    • pp.86-95
    • /
    • 2020
  • Background: Ginsenoside Rb1 (Rb1), one of the most abundant protopanaxadiol-type ginsenosides, exerts excellent neuroprotective effects even though it has low intracephalic exposure. Purpose: The present study aimed to elucidate the apparent contradiction between the pharmacokinetics and pharmacodynamics of Rb1 by studying the mechanisms underlying neuroprotective effects of Rb1 based on regulation of microflora. Methods: A pseudo germ-free (PGF) rat model was established, and neuroprotective effects of Rb1 were compared between conventional and PGF rats. The relative abundances of common probiotics were quantified to reveal the authentic probiotics that dominate in the neuroprotection of Rb1. The expressions of the gamma-aminobutyric acid (GABA) receptors, including GABAA receptors (α2, β2, and γ2) and GABAB receptors (1b and 2), in the normal, ischemia/reperfusion (I/R), and I/R+Rb1 rat hippocampus and striatum were assessed to reveal the neuroprotective mechanism of Rb1. Results: The results showed that microbiota plays a key role in neuroprotection of Rb1. The relative abundance of Lactobacillus helveticus (Lac.H) increased 15.26 fold after pretreatment with Rb1. I/R surgery induced effects on infarct size, neurological deficit score, and proinflammatory cytokines (IL-1β, IL-6, and TNF-α) were prevented by colonizing the rat gastrointestinal tract with Lac.H (1 × 109 CFU) by gavage 15 d before I/R surgery. Both Rb1 and Lac.H upregulated expression of GABA receptors in I/R rats. Coadministration of a GABAA receptor antagonist significantly attenuated neuroprotective effects of Rb1 and Lac.H. Conclusion: In sum, Rb1 exerts neuroprotective effects by regulating Lac.H and GABA receptors rather than through direct distribution to the target sites.

Autophagy-enhancing and neuroprotective effects of Wonji-Gobon mixture (WGM) in a Parkinson's disease mouse model

  • Lee, Jin-Wook;Kwak, Jin-Young;Koh, Young-Mee;Ahn, Taek-Won
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.4
    • /
    • pp.341-349
    • /
    • 2018
  • The aim of this study was to evaluate autophagy-enhancing and neuroprotective effects of Wonji-Gobon mixture (WGM), a traditional Chinese prescription medication, in Parkinson's disease (PD) mouse models. Our investigation found that WGM increased the expression of both Beclin1 and LC3b-II proteins as measured with western blot in the BV2 cell line; both proteins play a role in autophagy. WGM also increased the autophagy expression as measured by fluorescence-activated cell-sorting analysis in the BV2 cell line. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced PD models, WGM significantly increased the amount of dopamine in a striatum-substantia nigra suspension, produced notable results in the forced swim test, and increased serotonin as measured by high-performance liquid chromatography analysis; these results are indicative of neuroprotective effects. In summary, our findings indicate that WGM treatment has neuroprotective effects that are partially mediated by autophagy enhancement.

Neuroprotective Effects of Extracts from Diospyros kaki L. Peel (단감(Diospyros Kaki L.)껍질 추출물의 신경세포 보호 효과)

  • Lee, Mi-Ra;Moon, Seong-Hee;Choi, Ae-Ran;Lee, Seung-Cheol;Ahn, Kwnag-Hwan;Park, Hae-Ryong
    • Korean journal of food and cookery science
    • /
    • v.27 no.4
    • /
    • pp.67-73
    • /
    • 2011
  • This study was performed to assess the neuroprotective effects of methanolic extracts from sweet persimmon peel (PPE) against glutamate-induced cytotoxicity in hybridoma N18-RE-105 cells. The neuroprotective effects of PPE in N18-RE-105 cells were measured using the MTT reduction assay, LDH release assay, and phase-contrast microscopy. The results of the MTT reduction assay showed that treating cells with 500 ${\mu}g/ml$ PPE resulted in cell viability of 66.9%. Additionally, the morphological changes and the results of the LDH release assay showed that glutamate-induced damage to nerve cells was strongly inhibited by PPE. GSH content of N18-RE-105 cells was 3.5 ${\mu}M$ compared to that of the control, whereas pretreatment with 500 ${\mu}g/ml$ PPE increased GSH content by 4.7 ${\mu}M$. PPE was fractionated with hexane, and that layer had the highest neuroprotective effects in glutamate-stressed N18-RE-105 cells. In conclusion, our data showed that glutamate potentiated the effects of N18-RE-105 cell death by a mechanism involving oxidative stress. Therefore, PPE may be a potential candidate for prevention and therapy of neurodegenerative diseases.

Neuroprotective Effect of Gardeniae Fructus against Oxidative Damage Induced by tert-Butyl Hydroperoxide in PC12 Cells (PC12 cell에서 tert-butyl hydroperoxide로 유도된 산화적 손상에 대한 치자의 신경보호효과)

  • Jong Rok, Lee;Sang Chan, Kim;Sung Hui, Byun;Sook Jahr, Park
    • Herbal Formula Science
    • /
    • v.31 no.1
    • /
    • pp.29-39
    • /
    • 2023
  • Objective : Gardeniae Fructus (GF) is the ripe fruit of Gardenia jasminoides Ellisa with a bitter taste and cold properties. Ingredient compounds including geniposide are known to have anti-inflammatory, antioxidant, and neuroprotective effects. The purpose of this study was to investigate the neuroprotective effect of GF on tBHP-induced PC12 cells. Methods : Cell viability was measured by the MTT assay, and apoptosis was determined by the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. The expression level of each protein was monitored by Western blot analysis, and reactive oxygen species (ROS) were analyzed using DCFH-DA. Results : In PC12 cells, tBHP induced cell death through apoptosis with caspase activation and PARP inactivation. Cells treated with tBHP showed an increase in intracellular ROS and depletion of GSH. Pretreatment with GF prevented tBHP-induced apoptosis, reduced ROS, and increased GSH. GF also maintained increased Nrf2 expression in the presence of tBHP. Phosphorylation of JNK and p38 MAPK was increased by tBHP, whereas phosphorylation of ERK was decreased. GF restored changes in ERK and p38 phosphorylation, but not JNK phosphorylation. Conclusion : These results indicate that GF has neuroprotective effects through anti-apoptotic and antioxidant effects mediated by regulation of Nrf2 expression and phosphorylation of ERK and p38. It also demonstrates the potential use of GF as a source of antioxidant and neuroprotective substances.

Effect of Pioglitazone on Excitotoxic Neuronal Damage in the Mouse Hippocampus

  • Lee, Choong Hyun;Yi, Min-Hee;Chae, Dong Jin;Zhang, Enji;Oh, Sang-Ha;Kim, Dong Woon
    • Biomolecules & Therapeutics
    • /
    • v.23 no.3
    • /
    • pp.261-267
    • /
    • 2015
  • Pioglitazone (PGZ), a synthetic peroxisome proliferator-activated receptor ${\gamma}$ agonist, is known to regulate inflammatory process and to have neuroprotective effects against neurological disorders. In the present study, we examined the effects of 30 mg/kg PGZ on excitotoxic neuronal damage and glial activation in the mouse hippocampus following intracerebroventricular injection of kainic acid (KA). PGZ treatment significantly reduced seizure-like behavior. PGZ had the neuroprotective effect against KA-induced neuronal damage and attenuated the activations of astrocytes and microglia in the hippocampal CA3 region. In addition, MPO and $NF{\kappa}B$ immunoreactivities in the glial cells were also decreased in the PGZ-treated group. These results indicate that PGZ had anticonvulsant and neuroprotective effects against KA-induced excitotocix injury, and that neuroprotective effect of PGZ might be due to the attenuation of KA-induced activation in astrocytes and microglia as well as KA-induced increases in MPO and $NF{\kappa}B$.

Effects of Allium hookeri Extracts on Glutamate-induced Neurotoxicity in HT22 Cells (글루타메이트로 유발한 세포독성에 대한 삼채추출물의 뇌세포 보호 효과)

  • Kim, Ji-Yun;Ko, Wonmin;Kim, Ae-Jung
    • Korean Journal of Pharmacognosy
    • /
    • v.48 no.1
    • /
    • pp.31-37
    • /
    • 2017
  • Glutamate-induced oxidative stress results in neuro-degenerative disorders in many central nervous system (CNS) such as Alzheimer's disease, ischemia, Huntington's disease, and Parkinson's disease. Our study was performed to investigate neuroprotective effects of Allium hookeri extracts (leaf, root, and whole) on glutamate-induced HT22 cells. In this study, ethanol extract of A. hookeri showed the outstanding neuroprotective effect in HT22 cells. In addition, we found that ethanol extract of A. hookeri root increased heme oxygenase (HO)-1 in HT22 cells. Moreover, ethanol extract of A. hookeri root also upregulated nuclear accumulation of nuclear factor E2-related factor 2 (Nrf2) in HT22 cells. These results demonstrate that ethanol extract of A. hookeri root contributes neuroprotective effects against glutamate-induced oxidative stress in HT22 cells, via Nrf2-mediated HO-1 expression. Our study suggests that ethanol extract of A. hookeri root could be the potential agent for the treatment of many neuro-degenerative diseases.

Neuroprotective Effects of Ethanol Extract of Ganoderma lucidum L. on murine hippocampal cells (영지 에탄올 추출물의 마우스 유래 뇌 해마세포 보호효과)

  • Lee, Seung Cheol;Im, Nam-Kyung;Jeong, Hye Young;Choi, Eun Hwa;Jeon, Soo Myeong;Jeong, Gil-Saeng
    • Korean Journal of Pharmacognosy
    • /
    • v.45 no.2
    • /
    • pp.161-167
    • /
    • 2014
  • Ganoderma lucidum L. (GL) is a traditional oriental medicine that has been widely used as anti-inflammatory, antitumor and anti-oxidant in Korea and other Asian countries. In this study, we investigated the ethanol extract of GL has neuroprotective effects in murine hippocampal HT22 cells. GL ethanol extract has the potent neuroprotective effects on glutamate-intoxicated cells by inducing the expression of heme oxygenase (HO)-1 in HT22 cells. GL ethanol extract increased JNK phosphorylation. Obviously, When we treated the GL extract with c-Jun N-terminal kinase (JNK) inhibitor (SP600125), HO-1 expression was reduced. Moreover, we found that GL treatment caused the nuclear accumulation of Nrf2. In conclusion, the ethanol extract of GL significantly protects glutamate-induced oxidative damage by induction of HO-1 via Nrf2, JNK pathway in mouse hippocampal HT22. These results suggest that GL ethanol extract would be a good source for taking active compounds and may be a potential pharmaceutical products for brain disorder induced by neuronal damage and oxidative stress.

Neuroprotective Effects of N-Acetyldopamine Dimers from Cicadidae Periostracum

  • Thapa, Punam;Katila, Nikita;Choi, Hyukjae;Han, Ah-Reum;Choi, Dong-Young;Nam, Joo-Won
    • Natural Product Sciences
    • /
    • v.27 no.3
    • /
    • pp.161-168
    • /
    • 2021
  • The chemical investigation of the 90% EtOH extract from Cicadidae Periostracum led to the isolation and identification of seven known N-acetyldopamine dimers (1-7). These compounds were identified by comparing mass spectrometry data and NMR spectroscopic data with those previously reported. In this study, complete interpretation of 1D and 2D NMR data of 1 and 2 were reported for the first time. In addition, compounds 3 and 4 were isolated from this material for the first time. All isolates were obtained as racemic mixtures, as confirmed by chiral HPLC. Furthermore, we evaluated the neuroprotective activities of compounds 1-7 and found that compounds 1, 5, and 6 significantly attenuated rotenone-induced death of SH-SY5Y neuroblastoma cells at a concentration of 100 μM. Parallel to this result, compounds 3 and 6 displayed antioxidant effects in the cytoplasm, as determined by CM-H2DCFDA fluorescence intensity, while compounds 1 and 5 showed antioxidant effects in the mitochondria, as assessed by MitoSox fluorescence intensity. Overall, these results suggest that some of these compounds protect neuroblastoma cells by ameliorating the release of reactive oxygen species. Further studies are warranted to elucidate the underlying mechanisms by which these compounds exhibit antioxidant and neuroprotective actions.

Neuroprotective Effects of Heat-Killed Levilactobacillus brevis KU15152 on H2O2-Induced Oxidative Stress

  • Hyun-Ji Bock;Na-Kyoung Lee;Hyun-Dong Paik
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.9
    • /
    • pp.1189-1196
    • /
    • 2023
  • This study proposed to demonstrate the neuroprotective effects of heat-killed Levilactobacillus brevis KU15152. Heat-killed L. brevis KU15152 showed antioxidant activity similar to that of Lacticaseibacillus rhamnosus GG, in terms of radical scavenging activity. To evaluate the neuroprotective effects, conditioned medium (CM) obtained by incubating heat-killed bacteria in intestinal cells (HT-29) was used through gut-brain axis. CM from L. brevis KU15152 protected neuroblastoma cells (SH-SY5Y) against H2O2-induced oxidative stress. Pretreatment with CM significantly alleviated the morphological changes induced by H2O2. Heat-killed L. brevis KU15152 showed an increased brain-derived neurotrophic factor (BDNF) expression in HT-29 cells. L. brevis KU15152-CM remarkably downregulated the Bax/Bcl-2 ratio, while upregulating the expression of BDNF and tyrosine hydroxylase (TH) in SH-SY5Y cells. Furthermore, L. brevis KU15152-CM reduced caspase-3 activity following H2O2 treatment. In conclusion, L. brevis KU15152 can be potentially used as food materials to avoid neurodegenerative diseases.

Antioxidant and Neuroprotective Effects of Gamisoyo-san (가미소요산(加味逍遙散)의 항산화효과(抗酸化效果)및 신경세포(神經細胞) 보호효과(保護效果))

  • Lee, Seung-Han;Lee, Jin-Moo;Cho, Jung-Hoon;Lee, Chang-Hoon;Jang, Jun-Bock;Lee, Kyung-Sub
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.23 no.3
    • /
    • pp.1-13
    • /
    • 2010
  • Purpose: These studies were undertaken to evaluate the anti-oxidative and neuroprotective effects of Gamisoyo-san(GMSYS). Materials and Methods: We studied the antioxidant effects of GMSYS by assessing the DPPH free radical and the ABTS radical cation inhibition activities, the total polyphenolic contents(TPC). To evaluate the effects of GMSYS in the human neuroblastoma cells, we measured the cell viabilities in SH-SY5Y cells treated with GMSYS. Then we observed the protective effects of GMSYS against 6-OHDA induced neurotoxicity in SH-SY5Y cells. To confirm the neuroprotective effects of GMSYS in the primary culture of mesencephalic dopaminergic cells, we counted the TH-immunopositive cells and measured the NO and TNF-$\alpha$ after the treatment of GMSYS and 6-OHDA. Results: The DPPH free radical and the ABTS radical cation inhibition activities were increased in a dose dependent manner and the IC50 were $133.60{\mu}g/m{\ell}$ and $106.20{\mu}g/m{\ell}$, respectively. The TPC was 0.78%. There were no differences between the various concentrations of GMSYS and the control in the cell viability of SH-SY5Y cells. The neuroprotective effects of GMSYS were shown in the co-treatment group at the low concentrations of $25{\mu}g/m{\ell}$ and the post-treatment group at all concentrations. After the treatment of GMSYS and 6-OHDA in the primary culture of dopaminergic cells, the TH-immunopositive cells were significantly increased in $0.2{\mu}g/m{\ell}$ of GMSYS than the 6-OHDA group. The NO and TNF-$\alpha$ were significantly decreased in $0.2{\mu}g/m{\ell}$ of GMSYS than the 6-OHDA group. Conclusions: This study shows that GMSYS has the antioxidant and neuroprotective effects, especially in the mesencephalic dopaminergic cells. We suggest that GMSYS could be useful for the treatment of postmenopausal depression related with the degeneration of dopamine neuron.