• Title/Summary/Keyword: Non-NMDA

Search Result 47, Processing Time 0.017 seconds

Effect of N-methyl-D-aspartic acid(NMDA)-and Non NMDA-Receptor Agonists on Serotonin Release from Cultured Neurons of Fetal Rat Brainstem (뇌간 신경세포 배양에서 세로토닌 분비에 대한 N-methyl-D-aspartic Acid(NMDA) 및 Non-NMDA 수용체 효현제들의 작용)

  • Yoo, Soon-Mi;Kim, Yul-A;Song, Dong-Keun;Suh, Hong-Won;Kim, Yung-Hi
    • The Korean Journal of Pharmacology
    • /
    • v.31 no.2
    • /
    • pp.141-144
    • /
    • 1995
  • Serotonergic neurons in brainstem play important roles in the endogenous descending pain inhibitory system. To illucidate the involvement of glutamate receptors in the regulation of brainstem serotonergic neurons, we studied the effects of glutamate receptor agonists on 5-hydroxytryptamine(5-HT) release from cultured neurons of rat fetal (gestational age 14th day) brainstem. Cultured cells maintained for 10 days in vitro were stimulated for 30 minutes with agonists of glutamate receptor subtypes at 10-1,000 micromolar concentration. Glutamate (10-1,000 M) increased 5-HT release in a concentration-dependent manner. N-methyl-D-aspartic acid $(NMDA)(10-1,000\;{\mu}M)$ increased 5-HT release in a concentration-dependent manner. Non-NMDA receptor agonists, kainate and $AMPA(3-1,000\;{\mu}M)$ also concentration-dependently increased 5-HT release. These results suggest that both NMDA and non-NMDA receptors regulate 5-HT release from brainstem serotonergic neurons.

  • PDF

Effects of Placing Micro-Implants of Melatonin in Striatum on Oxidiative Stress and Neuronal Damage Mediated by N-Methyl-D-Aspartate (NMDA) and Non-NMDA Receptors

  • Kim, Hwa-Jung;Kwon, Jin-Suk
    • Archives of Pharmacal Research
    • /
    • v.22 no.1
    • /
    • pp.35-43
    • /
    • 1999
  • Overstimulation of both kainate (KA) and N-methyl-D-aspartate (NMDA) receptors has been reported to induce excitatoxicity which can be characterized by neuronal damage and formation of reactive oxygen free radicals. Neuroprotective effect of melatonin against KA-induced excitotoxicity have been documented in vitro and in vivo. It is, however, not clear whether melationin is also neuroportective against excitotoxicity mediated by NMDA receptors. In the present work, we tested the in vivo protective effects of striatally infused melatonin against the oxidative stress and neuronal damage induced by the injection of KA and NMDA receptors into the rat striatum. Melatonin implants consisting of 22-gauge stainless-steel cannule with melatonin fused inside the tip were placed bilaterally in the rat brain one week prior to intrastriatal injection of glutamate receptor subtype agonists. Melatonin showed protective effects against the elevation of lipid peroxidation induced by either KA or NMDA and recovered Cu, Zn-superoxide dismutase activities reduced by both KA and NMDA into the control level. Melatonin also clearly blocked both KA- and NMDA-receptor mediated neuronal damage assessed by the determination of choline acetyltransferase activity in striatal monogenages and by microscopic observation of rat brain section stained with cresyl violet. The protective effects of melatonin are comparable to those of DNQX and MK801 which are the KA- and NMDA-receptor antagonist, respectively. It is suggested that melatonin could protect against striatal oxidative damages mediated by glutamate receptors, both non-NMDA and NMDA receptors.

  • PDF

N-methyl-D-aspartate (NMDA) and Non-NMDA Receptors are Involved in the Production and Maintenance of Nociceptive Responses by Intraplantar Injection of Bee Venom and Melittin in the Rat

  • Kim, Jae-Hwa;Shin, Hong-Kee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.3
    • /
    • pp.179-186
    • /
    • 2005
  • Whole bee venom (WBV) and its major component, melittin, have been reported to induce long-lasting spontaneous flinchings and hyperalgesia. The current study was designed to elucidate the peripheral and spinal mechanisms of N-methyl-D-aspartate (NMDA) and non-NMDA receptors by which intraplantar (i.pl.) injection of WBV and melittin induced nociceptive responses. Changes in mechanical threshold and flinching behaviors were measured after the injection of WBV (0.04 mg or 0.1 mg/paw) and melittin (0.02 mg or 0.05 mg/paw) into the mid-plantar area of a rat hindpaw. MK-801 and CNQX (6-cyano-7-nitroquinoxaline-2,3-dione disodium) were administered intrathecally (i.t. $10{\mu}g$) or i.pl.($15{\mu}g$) 15 min before or i.t. 60 min after i.pl. WBV and melittin injection. Intrathecal pre- and postadministration of MK-801 and CNQX significantly attenuated the ability of high dose WBV and melittin to reduce paw withdrawal threshold (PWT). In the rat injected with low dose, but not high dose, of WBV and melittin, i.pl. injection of MK-801 effectively suppressed the decrease of PWTs only at the later time-points, but the inhibitory effect of CNQX (i.pl.) was significant at all time-point after the injection of low dose melittin. High dose WBV- and melittin-induced spontaneous flinchings were significantly suppressed by i.t. administration of MK-801 and CNQX, and low dose WBV- and melittin-induced flinchings were significantly reduced only by intraplantarly administered CNQX, but not by MK-801. These experimental flinchings suggest that spinal, and partial peripheral mechanisms of NMDA and non-NMDA receptors are involved in the development and maintenance of WBV- and melittin-induced nociceptive responses.

Participation of NMDA and non-NMDA glutamate receptors in the formalin-induced inflammatory temporomandibular joint nociception

  • Yang, Gwi-Y.;Lee, Ju-H.;Ahn, Dong-K.
    • International Journal of Oral Biology
    • /
    • v.32 no.2
    • /
    • pp.59-65
    • /
    • 2007
  • It has been well known that excitatory amino acids, primarily glutamate, are involved in the transmission of nociception in pathological and physiological conditions in the spinal and brainstem level. Recently, peripheral glutamate also play a critical role in the peripheral nociceptive transmissions. The present study investigated the role of N-methyl-D-aspartic acid (NMDA) or non-NMDA ionotropic glutamate receptors in formalin-induced TMJ pain. Experiments were carried out on male Sprague-Dawley rats weighing 220-280 g. Intra-articular injection was performed under halothane anesthesia. Under anesthesia, AP-7 (10, $100\;{\mu}M$, $1\;mM/20\;{\mu}L$), a NMDA receptor antagonist, or CNQX disodium salt (0.5, 5, 50, $500\;{\mu}M/20\;{\mu}L$), a non-NMDA receptor antagonist, were administered intra-articularly 10 min prior to the application of 5% formalin. For each animal, the number of behavioral responses, such as rubbing and/or scratching the TMJ region, was recorded for nine successive 5-min intervals. Intra-articular pretreatment with 1 mM of AP-7 or $50\;{\mu}M$ CNQX significantly decreased the formalin-induced scratching behavioral responses during the second phase. Intra-articular pretreatment with $500\;{\mu}M$ of CNQX significantly decreased the formalin-induced scratching behavior during both the first and the second phase. These results indicate that the intra-articular administration of NMDA or non-NMDA receptor antagonists inhibit formalin-induced TMJ nociception, and peripheral ionotropic glutamate receptors may play an important role in the TMJ nociception.

Characteristics of NMDA- and Glutamate-Induced Currents in Primary Cultured Rat Hippocampal Neurons (일차 배양 해마신경세포에서 NMDA- 및 Glutamate- 유도전류의 특성)

  • Kim, Il-Man;Son, Eun-Ik;Kim, Dong-Won;Kim, In-Hong;Yim, Man-Bin;Song, Dae-Kyu;Park, Won-Kyun;Bae, Jae-Hun;Choi, Ha-Young
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.11
    • /
    • pp.1429-1436
    • /
    • 2000
  • Objectives : This study was performed in cultured rat hippocampal neurons to investigate the acute electrophysiological features of ionotropic glutamate receptors which act as a major excitatory neurotransmitter in mammalian brain. Method : Glutamate receptor agonists were applied into the bath solution embedding in whole-cell patch-clamp recording of single hippocampal neuron. Results : In voltage-clamped at -60mV and the presence of 1mmol $Mg^{2+}$, extracellulary applied NMDA did not induce any inward current. Both the elimination of $Mg^{2+}$ and addition of glycine in bath, however, elicited a NMDAinduced inward current. $Mg^{2+}$ block current was increased gradually in more negative potentials from -30mV, showing a negative slope in I-V plot with $Mg^{2+}$. Glutamate-induced current represented an outward rectification. A non-NMDA receptor component occupied about 40% of glutamate-induced current in the voltage range of -80mV to +60mV. Conclusion : Present study suggests that glutamate activates acutely the non-NMDA receptors which induces an inward current in the level of resting membrane potential. This makes the membrane potential increase and can activate the NMDA receptors that permit calcium influx against $Mg^{2+}$ block. At the depolarized state of neuron, there may be recovery mechanisms of membrane potential to repolarize irrespective of voltage-dependent potassium channels in the hippocampal neurons.

  • PDF

Glutamate-Induced Serotonin Depletion in Fetal Rat Brainstem Cultures (흰쥐태 뇌간의 배양에서 Glutamate에 의한 Serotonin의 고갈)

  • Park, Sang-Wook;Wie, Myung-Bok;Song, Dong-Keun;Kim, Yong-Sik;Kim, Yung-Hi
    • The Korean Journal of Pharmacology
    • /
    • v.29 no.2
    • /
    • pp.189-193
    • /
    • 1993
  • Exposure of dissociated cultures from fetal rat brainstem to glutamate for upto 6 h decreased cellular contents of 5-hydroxytryptamine and 5-hydroxyindoleacetic acid in a concentration- and time-dependent manner. In addition, glutamate induced lactate dehydrogenase leakage. Tetrodotoxin did not block the effects induced by glutamate. MK-801 $(1{\mu}M)$, an N-methyl-D-aspartate (NMDA) channel blocker, but not 6-cyano-2,3-dihydroxy-7-nitro-quinoxazoline $(CNQX;\;3{\mu}M)$, a non-NMDA receptor antagonist, blocked glutamate-induced effects, indicating that these glutamate-induced responses are mediated through NMDA receptors.

  • PDF

GABAA Receptor- and Non-NMDA Glutamate Receptor-Mediated Actions of Korean Red Ginseng Extract on the Gonadotropin Releasing Hormone Neurons

  • Cho, Dong-Hyu;Bhattarai, Janardhan Prasad;Han, Seong-Kyu
    • Journal of Ginseng Research
    • /
    • v.36 no.1
    • /
    • pp.47-54
    • /
    • 2012
  • Korean red ginseng (KRG) has been used worldwide as a traditional medicine for the treatment of various reproductive diseases. Gonadotropin releasing hormone (GnRH) neurons are the fundamental regulators of pulsatile release of gonadotropin required for fertility. In this study, an extract of KRG (KRGE) was applied to GnRH neurons to identify the receptors activated by KRGE. The brain slice patch clamp technique in whole cell and perforated patch was used to clarify the effect of KRGE on the membrane currents and membrane potentials of GnRH neurons. Application of KRGE (3 ${\mu}g$/${\mu}L$) under whole cell patch induced remarkable inward currents (56.17${\pm}$7.45 pA, n=25) and depolarization (12.91${\pm}$3.80 mV, n=4) in GnRH neurons under high $Cl^-$ pipette solution condition. These inward currents were not only reproducible, but also concentration dependent. In addition, inward currents and depolarization induced by KRGE persisted in the presence of the voltage gated $Na^+$ channel blocker tetrodotoxin (TTX), suggesting that the responses by KRGE were postsynaptic events. Application of KRGE under the gramicidin perforated patch induced depolarization in the presence of TTX suggesting its physiological significance on GnRH response. Further, the KRGE-induced inward currents were partially blocked by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; non-NMDA glutamate receptor antagonist, 10 ${\mu}M$) or picrotoxin (PIC; $GABA_A$ receptor antagonist, 50 ${\mu}M$), and almost blocked by PIC and CNQX mixture. Taken together, these results suggest that KRGE contains ingredients with possible GABA and non-NMDA glutamate receptor mimetic activity, and may play an important role in the endocrine function of reproductive physiology, via activation of $GABA_A$ and non-NMDA glutamate receptors in GnRH neurons.

Effects of Protopanaxatriol-Ginsenoside Metabolites on Rat $N$-Methyl-D-Aspartic Acid Receptor-Mediated Ion Currents

  • Shin, Tae-Joon;Hwang, Sung-Hee;Choi, Sun-Hye;Lee, Byung-Hwan;Kang, Ji-Yeon;Kim, Hyeon-Joong;Zukin, R. Suzanne;Rhim, Hye-Whon;Nah, Seung-Yeol
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.2
    • /
    • pp.113-118
    • /
    • 2012
  • Ginsenosides are low molecular weight glycosides found in ginseng that exhibit neuroprotective effects through inhibition of $N$-methyl-D-aspartic acid (NMDA) receptor channel activity. Ginsenosides, like other natural compounds, are metabolized by gastric juices and intestinal microorganisms to produce ginsenoside metabolites. However, little is known about how ginsenoside metabolites regulate NMDA receptor channel activity. In the present study, we investigated the effects of ginsenoside metabolites, such as compound K (CK), protopanaxadiol (PPD), and protopanaxatriol (PPT), on oocytes that heterologously express the rat NMDA receptor. NMDA receptor-mediated ion current ($I_{NMDA}$) was measured using the 2-electrode voltage clamp technique. In oocytes injected with cRNAs encoding NMDA receptor subunits, PPT, but not CK or PPD, reversibly inhibited $I_{NMDA}$ in a concentration-dependent manner. The $IC_{50}$ for PPT on $I_{NMDA}$ was $48.1{\pm}4.6\;{\mu}M$, was non-competitive with NMDA, and was independent of the membrane holding potential. These results demonstrate the possibility that PPT interacts with the NMDA receptor, although not at the NMDA binding site, and that the inhibitory effects of PPT on $I_{NMDA}$ could be related to ginseng-mediated neuroprotection.

Low Non-NMDA Receptor Current Density as Possible Protection Mechanism from Neurotoxicity of Circulating Glutamate on Subfornical Organ Neurons in Rats

  • Chong, Wonee;Kim, Seong Nam;Han, Seong Kyu;Lee, So Yeong;Ryu, Pan Dong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.2
    • /
    • pp.177-181
    • /
    • 2015
  • The subfornical organ (SFO) is one of circumventricular organs characterized by the lack of a normal blood brain barrier. The SFO neurons are exposed to circulating glutamate ($60{\sim}100{\mu}M$), which may cause excitotoxicity in the central nervous system. However, it remains unclear how SFO neurons are protected from excitotoxicity caused by circulating glutamate. In this study, we compared the glutamate-induced whole cell currents in SFO neurons to those in hippocampal CA1 neurons using the patch clamp technique in brain slice. Glutamate ($100{\mu}M$) induced an inward current in both SFO and hippocampal CA1 neurons. The density of glutamate-induced current in SFO neurons was significantly smaller than that in hippocampal CA1 neurons (0.55 vs. 2.07 pA/pF, p<0.05). To further identify the subtype of the glutamate receptors involved, the whole cell currents induced by selective agonists were then compared. The current densities induced by AMPA (0.45 pA/pF) and kainate (0.83 pA/pF), non-NMDA glutamate receptor agonists in SFO neurons were also smaller than those in hippocampal CA1 neurons (2.44 pA/pF for AMPA, p<0.05; 2.34 pA/pF for kainate, p< 0.05). However, the current density by NMDA in SFO neurons was not significantly different from that of hippocampal CA1 neurons (1.58 vs. 1.47 pA/pF, p>0.05). These results demonstrate that glutamate-mediated action through non-NMDA glutamate receptors in SFO neurons is smaller than that of hippocampal CA1 neurons, suggesting a possible protection mechanism from excitotoxicity by circulating glutamate in SFO neurons.

Cytoprotective Effects of Dihydrolipoic Acid and Lipoic Acid on the Oxidative Stress in Cultured Rat Cortical Neurons

  • Kim, Won-Ki
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.4
    • /
    • pp.427-433
    • /
    • 1998
  • In brain hypoxic-ischemia, an excess release of glutamate and a marked production of reactive oxygen species (ROS) occur in neuronal and non-neuronal cells. The present study investigated the effect of the biological antioxidants dihydrolipoic acid (DHLA) and lipoic acid (LA) on N-methyl-D-aspartate (NMDA)- and ROS-induced neurotoxicity in cultured rat cortical neurons. DHLA enhanced NMDA-evoked rises in intracellular calcium concentration ($[Ca^{2+}]_i$). In contrast, LA did not alter the NMDA-evoked calcium responses but decreased after a brief treatment of dithiothreitol (DTT), which possesses a strong reducing potential. Despite the modulation of NMDA receptor-mediated rises in $[Ca^{2+}]_i$, neither DHLA nor LA altered the NMDA receptor-mediated neurotoxicity, as assessed by measuring the amount of lactate dehydrogenase released from dead or injured cells. DHLA, but not LA, prevented the neurotoxicity induced by xanthine/xanthine oxidase-generated superoxide radicals. Both DHLA and LA decreased the glutathione depletion-induced neurotoxicity. The present data may indicate that biological antioxidants DHLA and LA protect neurons from ischemic injuries via scavenging oxygen free radicals rather than modulating the redox modulatory site(s) of NMDA receptor.

  • PDF