• Title/Summary/Keyword: Optical Bio-Sensor

Search Result 48, Processing Time 0.032 seconds

Bio-Optical Modeling of Laguna de Bay Waters and Applications to Lake Monitoring Using ASTER Data

  • Paringit, EC.;Nadaoka, K.;Rubio, MCD;Tamura, H.;Blanco, Ariel C.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.667-669
    • /
    • 2003
  • A bio-optical model was developed specific for turbid and shallow waters. Special studies were carried out to estimate absorption and scattering properties as well as backscattering probability of suspended matter. The inversion of bio-optical model allows for direct retrieval of turbidity and chlorophyll- a from the visible-near infrared (VNIR) range sensor. Time-series satellite imagery from ASTER AM-1 sensor, were used to monitor the Laguna de Bay water quality condition. Spatial distribution of temperature for the lake was extracted from the thermal infrared (TIR) sensor. Corresponding field surveys were conducted to parameterize the bio -optical model. In-situ measurements include suspended particle and chlorophyll-a concentrations profiles from nephelometric devices and processing of water samples. Hyperspectral measurements were used to validate results of the bio -optical model and satellite- based estimation. This study provides a theoretical basis and a practical illustration of applying space- based measurements on an operational basis.

  • PDF

Fabrication of Optical Sheet for LED Lighting with Integrated Environment Monitoring Sensors (환경모니터링 센서가 집적된 LED 조명용 광학시트 제작)

  • Choi, Yong Joon;Lee, Young Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.3
    • /
    • pp.35-39
    • /
    • 2013
  • In this paper, we developed an optical sheet for LED lighting with integrated $CO_2$ gas and temperature sensor which can monitor at the indoor environment. The optical sheet for LED lighting is fabricated through PMMA(Polymethyl methacrylate) injection process using mold. This research enables to fabricate the reflective sheet, light-guide plate and the prism sheet in a optical sheet. The fabricated sheet demonstrates higher intensity of optical efficiency compared with single-sided sheets. The $CO_2$ sensor was fabricated using NDIR(NON-Dispersive Infrared) method and it has $0.0235mV/V{\cdot}PPM$ sensitivity. The temperature sensor was fabricated using RTD(Resistance temperature detector) method and it has $0.563{\Omega}/^{\circ}C $sensitivity.

Diffraction Characteristics for Optical Bio-Sensor of Bi-level Grating with Mushroom Profile (버섯형 이중 격자구조의 광 바이오센서에 대한 회절 특성)

  • Ho, Kwang-Chun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.2
    • /
    • pp.129-134
    • /
    • 2022
  • The resonant bio-sensor of bi-level grating structure with mushroom profile has been designed for operating in the near-infrared (NIR) wavelength range under transverse electric (TE) polarization. The rigorous modal transmission-line theory (MTLT) is applied to determine the optical characteristics, and the reflection resonance of the grating structure is analyzed by varying their geometrical parameters. The numerical result shows that an excited sharp Fano resonance (FR), which does not occur in single layer grating, is demonstrated. The relationship between structure parameters of bi-level grating and the reflectance spectrum in order to guarantee the appearance of FR in the designed structure is fully investigated. An optical bio-sensor with a potential sensitivity of 112.9~214.3 deg/RIU and 447 nm/RIU is designed based on the proposed structure. The proposed mushroom profile may serve as a powerful sample for the design of optical bio-sensors with a wide range of applications.

Optical Skin-fat Thickness Measurement Using Miniaturized Chip LEDs: A Preliminary Human Study

  • Ho, Dong-Su;Kim, Ee-Hwa;Hwang, In-Duk;Shin, Kun-Soo;Oh, Jung-Taek;Kim, Beop-Min
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.304-309
    • /
    • 2009
  • We tested the feasibility of measuring fat thickness using a miniaturized chip LED sensor module, testing 12 healthy female subjects. The module consisted of a single detector and four sources at four different source-detector distances (SD). A segmental curve-fitting procedure was applied, using an empirical algorithm obtained by Monte-Carlo simulation, and fat thicknesses were estimated. These thicknesses were compared to computed-tomography (CT) results; the correlation coefficient between CT and optical measurements was 0.932 for bicep sites. The mean percentage error between the two measurements was 13.12%. We conclude that fat thickness can be efficiently measured using the simple sensor module.

Implementation of Bio-Sensor with Coupled Plasmon-Waveguide Resonance Profile (결합된 플라즈몬-도파관 공진 구조로 구성된 바이오센서의 구현)

  • Kwang-Chun Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.1
    • /
    • pp.109-114
    • /
    • 2024
  • The bio-sensing properties of TE and TM guided modes in the coupled plasmon-waveguide resonance (PWR) configuration are investigated. The modal transmission-line theory (MTLT) is used for numerical analysis. The proposed PWR bio-sensor is composed of multi-layered configuration with N pairs of MgF2-Si3N4 layers to enhance the sensitivity of a conventional Ag-based surface plasmon resonance bio-sensor. The angular sensitivity of bio-sensor is numerically analyzed for a wide range of biological solutions (refractive index 1.33~1.37). Furthermore, the availability of sensor to detect cancer cells and blood plasma concentration is evaluated. Finally, the results indicate that the proposed bio-sensor is capable efficiently to detect various kinds of cancer cells and different glucose concentrations in urine.

Development of an Automatic Irrigation Control System in Protected Horticulture (시설원예에 있어서 물관리 지동화 시스템 개발)

  • 김경수;이기명;장익주
    • Journal of Bio-Environment Control
    • /
    • v.1 no.1
    • /
    • pp.61-71
    • /
    • 1992
  • This study is performed to develop an automatic irrigation control of system for effective water management in greenhouse. The automatic irrigation control system is composed of an IR-RED optical sensor in tensiometer and an One-chip micro controller. The following results are obtained : 1. A practical IR-RED optical sensor in tensiometer, which shows the starting point of irrigation, was developed. 2. The automatic irrigation system with the optical sensor and One-chip micro controller was developed and also designed to be able to combine with the control system for temperature, curtain opening, etc. 3. A multiple irrigation control system for several greenhouses were suggested. 4. The results of the system test with the driving program for automatic water management were excellent.

  • PDF

High Sensitivity Analysis of Optical Bio-Sensor based on Grating-Assisted Strip Directional Coupler (격자 구조형 스트립 방향성 결합기에 기초한 광 바이오-센서의 고 민감도 분석)

  • Kwang-Chun Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.6
    • /
    • pp.157-162
    • /
    • 2023
  • A highly sensitive refractive index bio-sensor based on grating-assisted strip directional coupler (GASDC) is proposed. The sensor is designed using two asymmetric strip waveguides with a top-loaded grating structure in one of the waveguides. Maximum light couples from one waveguide to the other at the resonance wavelength satisfying phase-matching condition (PMC), and it shows that the change in phase-matching condition with the change in refractive index of the analyte medium in the cover region can be used as a measure of the sensitivity. The proposed sensor will be an on-chip device with a high refractive index sensitivity, and the sensor configuration offers a low propagation loss, thereby enhancing the sensitivity. Furthermore, variation of the sensitivity with the waveguide parameters of sensor is evaluated to optimize the design.

Polymeric Waveguide Bio Sensors with Bragg Gratings (브래그 격자 광도파로형 바이오 센서)

  • Lee, Jae-Hyun;Kim, Gyeong-Jo;Oh, Min-Choel
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.1
    • /
    • pp.54-59
    • /
    • 2006
  • Biophotonic sensors based on polymer waveguide with Bragg reflection grating are demonstrated in this work. Waveguide Bragg reflectors were designed by using the effective index method and the transmission matrix method. The grating pattern was formed by exposing the laser interference pattern on a photoresist. On top of the inverted rib waveguide, the Bragg reflection grating was inscribed by the O2 plasma etching. In order to perform the bio-molecule detection experiment, a calixarene molecule was self-assembled on top of thin Au film deposited on the waveguide Bragg reflector. To measure the response of the sensor, several PBS solutions with different concentrations of potassium ion from 1 pM to $100\;{\mu}M$ were dropped on the sensor surface. The shift of Bragg reflection wavelength was observed from the fabricated sensor device, which was proportional to the concentration of potassium ion ranging from 1 pM to 108 pM.

Graphene Coated Optical Fiber SPR Biosensor

  • Kim, Jang Ah;Hwang, Taehyun;Dugasani, Sreekantha Reddy;Kulkarni, Atul;Park, Sung Ha;Kim, Taesung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.401-401
    • /
    • 2014
  • In this study, graphene, the most attractive material today, has been applied to the wavelength-modulated surface plasmon resonance (SPR) sensor. The optical fiber sensor technology is the most fascinating topic because of its several benefits. In addition to this, the SPR phenomenon enables the detection of biomaterials to be label-free, highly sensitive, and accurate. Therefore, the optical fiber SPR sensor has powerful advantages to detect biomaterials. Meanwhile, Graphene shows superior mechanical, electrical, and optical characteristics, so that it has tremendous potential to be applied to any applications. Especially, grapheme has tighter confinement plasmon and relatively long propagation distances, so that it can enhance the light-matter interactions (F. H. L. Koppens, et al., Nano Lett., 2011). Accordingly, we coated graphene on the optical fiber probe which we fabricated to compose the wavelength-modulated SPR sensor (Figure 1.). The graphene film was synthesized via thermal chemical vapor deposition (CVD) process. Synthesized graphene was transferred on the core exposed region of fiber optic by lift-off method. Detected analytes were biotinylated double cross-over DNA structure (DXB) and Streptavidin (SA) as the ligand-receptor binding model. The preliminary results showed the SPR signal shifts for the DXB and SA binding rather than the concentration change.

  • PDF