• Title/Summary/Keyword: Organ bath study

Search Result 54, Processing Time 0.028 seconds

Effects of Torilis Fructus Extract on the Relaxation of Corpus Cavernosum (음경해면체 이완작용에 미치는 사상자(蛇床子)의 효과)

  • Kim, Ho Hyun;Ahn, Sang Hyun;Park, Sun Young
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.32 no.1
    • /
    • pp.24-29
    • /
    • 2018
  • In order to define the effect of Torilis Fructus(TF) extract which has been used for the treatment of erectile dysfunction, experiments were carried out by organ bath study, histochemical and immunohistochemical methods. First, in the organ bath study, when TF extract was administered to the maxillary contracted corpus cavernosum by PE ($10^{-6}M$), there was a significant relaxation effect on corpus cavernosum at concentration of 1, $3mg/m{\ell}$. Compared with the absence of $\text\tiny{L}$-NNA pretreatmen, pretreatment of $\text\tiny{L}$-NNA was inhibited the relaxation effect of penile corpus cavernosum. In the immunohistochemical study, the eNOS positive reaction was significantly increased, and the PDE5 positive reaction was significantly decreased due to the administration of TF extract. Therefore, it show that the TF enhances the production of eNOS and NO, inhibits PDE5 which blocks the action of increased cGMP, relaxes the corpus cavernosum. So TF relaxes the corpus cavernosum and it can be used as a safer erectile dysfunction treatment.

Trials for the control of scuticociliatosis in the cultured olive flounder(paralkhthys olivaceus) by bath treatment

  • Jee, Bo-Young;Jo, Mi-Ra
    • Journal of fish pathology
    • /
    • v.15 no.2
    • /
    • pp.93-97
    • /
    • 2002
  • The scuticociliate, a histophagous ciliate, is known to cause high cumulative mortalities in juvenile olive flounder Paralichthys olivaceus rearing in land-based tank facilities. This study examined effects of bath treatment of 3 chemical agents including formalin, hydrogen peroxide and sodium chloride. and freshwater against scnricociliates infected olive flounder. Although 100 ppm formalin and freshwater did not completeIy eliminale ue scuticociliates within the internal organ of fish, chemicals were effective to prevent scuticociliatosis from spreading. It confirms the efficacy of the chemical with treating the diseased fish for at least 4 consecutive days.

Mechanism of Corni Fructus Induced Vasorelaxation in Rabbit Carotid Artery (산수유의 혈관이완효과 기전에 대한 연구)

  • Kim, Hyung Jun;Park, Sun Young;Kim, Tae Yeon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.30 no.2
    • /
    • pp.101-108
    • /
    • 2016
  • This study is conducted to investigate vasorelaxant effect of Corni Fructus(CF) on rabbit carotid artery. To determine vasorelaxant effect of CF on rabbit carotid artery, arterial sections with intact or removed endothelium were used in this organ bath study. After being contracted by phenylephrine(PE), arterial sections were treated with CF extract in a dose-dependent manner. To identity its mechanism, the contracted arterial sections by PE were pretreated with indomethacin(IM), tetraethylammonium chloride(TEA), Nω-nitro-L-arginine(L-NNA) or methylene blue(MB) and 1.0 ㎎/㎖ CF extract. We also studied to confirm the effect on influx of extracellular calcium chloride(Ca2+) of the CF extract in rabbit carotid artery. To measure the cytotoxicity of the CF extract, cell viability of human umbilical vein endothelial cell(HUVEC) was measured by MTT assay. Generation of nitric oxide(NO) was also measured by Griess reagent. The arterial sections with intact endothelium were relaxed significantly by CF extract, but this effect was inhibited in the arterial sections with damaged endothelium. The vasorelaxant effect was inhibited significantly when arterial sections were pretreated with IM, TEA, L-NNA, MB. In Ca2+-free krebs solution, increasing of arterial contraction by Ca2+ was also inhibited by CF significantly. The treatment of CF extract increased NO concentration in HUVEC. This study suggested that the vasorelaxant effect of CF extract would be related with endothelium derived relaxing factor(EDRF) such as NO, prostacyclin(PGI2), endothelium derived hyperpolarization factor(EDHF).

Effect of Poncirus Trifoliata on Colonic Motility in Spinal Cord Injured Rats (척수손상 흰쥐에서 대장 운동에 대한 지실의 효과)

  • Choi, Chul-Won;Joo, Min-Cheol;Lee, Moon-Young
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.18 no.4
    • /
    • pp.13-24
    • /
    • 2008
  • Objectives : The purpose of this study was to investigate the effect of Poncirus Trifoliata(PT) on improvement of fecal impaction in spinal cord injured(SCI) rats. Methods : Fifteen adult Sprague-Dawley female rats were used weighing 200~250 g. A complete spinal cord transection was performed surgically at the T10 cord level. Experimental groups were assigned into 3 groups: Control(n=5), SCI+vehicle(n=5) and SCI+PT(n=5). PT was administered 100mg/kg in 0.5ml every 24 hours from 1st operation day to 7th day. We measured the body weight and food intake as well as the number and the weight of fecal pellet every morning. After 1 week of operation, whole colon was divided into proximal and distal segments under anesthesia. Each segment of colon was mounted with longitudinal direction in a organ bath. We measured spontaneous contraction and compared the area under the curve in each segments. Enhanced responses were observed by acetylcholine($10^{-6}M$), 40 mM KCl solution, L-NAME($10^{-4}M$). Results : The fecal number and weights were significantly higher in the group of SCI+PT than SCI+vehicle group(p<0.05). In organ bath study, area under the curves of the spontaneous contraction in SCI+vehicle and SCI+PT groups were significantly increased compared to control group. Contractility of distal colon in response to acetylcholine or KCl in SCI+vehicle group was significantly decreased compared to other groups(p<0.05). Conclusions : These results suggest that PT might be useful to promote bowel emptying in spinal cord injured rats.

Acting Mechanisms of Extracellular$Ca^{2+}$ and $Ca^{2+}$ - antagonists on Endothelium - Derived Relaxing Factor in Rabbit Aorta. (내피세포성 이완인자에 대한 세포외 $Ca^{2+}$$Ca^{2+}$-길항제의 작용기전)

  • 진성훈
    • Journal of Chest Surgery
    • /
    • v.24 no.3
    • /
    • pp.229-244
    • /
    • 1991
  • A bioassay technique and organ bath study were performed to analyze the effects of extracellular $Ca^{2+}$ and $Ca^{2+}$-antagonists on endothelium-derived relaxing factor[s][EDRF] released from the endothelial cells of rabbit aorta. Transverse strips with intact endothelium or damaged endothelium were used for the mechanical contraction experiment using organ bath. Long segment including thoracic and abdominal aorta with endothelium [EDRF donor aorta] was perfused with Tyrode solution which was aerated with 95% $O_2-5%$ $CO_2$ mixed gas and kept at 35oC. The perfusate was bioassayed with a transverse strip of thoracic aorta with damaged endothelium. The test strip was contracted with nor-epinephrine and acetylcholine was used to stimulate the release of EDRF from endothelial cells. The results obtained were as follows; 1] The endothelium-dependent relaxation[EDR] induced by acetylcholine was biphasic; an initial rapid relaxation followed by a slow relaxation. 2] EDR induced by acetylcholine was reduced gradually with the decrease in the concentration of extracellular $Ca^{2+}$. The effect of extracellular $Ca^{2+}$ on EDR was more prominent in the late slow relaxation phase. 3] EDR to acetylcholine was not altered by acute exposure to organic $Ca^{2+}$-antagonists. Pretreatment with verapamil to the EDRF donor aortic segment did not alter the magnitude of EDR. 4] Among the inorganic $Ca^{2+}$-antagonists $Mn^{2+}$ and $Cd^{2+}$ did not inhibit EDR, whereas $Co^{2+}$ and $La^{3+}$ inhibited EDR. 5] The inhibitory response of $Co^{2+}$ to EDR developed when infused directly on the test strip. That of $La^{3+}$, however, was evoked when added to solution perfusing the donor aortic segment. The above results suggest that $Ca^{2+}$-antagonists do not affect EDR and the inhibitory effect of $Ca^{2+}$ results from influencing the action of EDRF on vascular smooth muscle, whereas that of $La^{3+}$ results from its action on the release of EDRF from endothelial cells.

  • PDF

Relaxation Effects of Corni Fructus Water Extract on Corpus Cavernosum (음경해면체에 미치는 산수유(山茱萸) 물 추출물의 이완효과)

  • Park, Sun Young;Ahn, Sang Hyun;Kim, Ho Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.31 no.6
    • /
    • pp.341-347
    • /
    • 2017
  • To investigate the effect of Corni Fructus(CF) water extracts on the relaxation of the corpus cavernosum, organ bath studies, histochemical and immunohistochemical methods were used and obtained the following results. In the organ bath study, the maximal contraction of the corpus cavernosum tissue by PE showed a significant relaxation effect at $3.0mg/m{\ell}$ of CF water extract. When ${\text\tiny{L}}$-NNA was pretreated corpuscular relaxation effect of CF water extract was significantly inhibited compared without ${\text\tiny{L}}$-NNA pretreatment. In $Ca^{2+}$-free solution, the increase of contraction due to $Ca^{2+}$ influx significantly inhibited in the pretreatment compared with no pretreatment of CF water extract. Histochemical and immunohistochemical studies showed that the ratio of smooth muscle to collagen fiber was increased in the CF group compared to the PE group in the corpus cavernosum, and the eNOS positive reaction increased and the PDE5 positive reaction decreased. These results suggest that CF extract has increased NO production through activation of eNOS and inhibited the action of PDE5 to block the extracellular $Ca^{2+}$ influx, thereby relaxing the smooth muscle of the corpus cavernosum.

Changes of Vascular Contractility of isolated Rat Aorta treated with Salt Stress (Salt 스트레스에 의한 흰쥐 적출대동맥의 수축력 변화양상)

  • 김종일;박태규;김중영
    • Journal of Environmental Science International
    • /
    • v.12 no.10
    • /
    • pp.1131-1136
    • /
    • 2003
  • To examine whether salt stress would alter or not contractility of isolated rat aorta, under anesthesia with sodium pentobarbital(50 mg kg-1 i.p.), male Sprague Dawley rats(300-330 g) were subjected to 0, 50, and 150 mM of sodium chloride at 37$^{\circ}C$ for 60 min. where as the sham group was left at modified Krebs-bicarbonate solution. To measure contractile response of vascular ring preparation isolated from rat was determined in organ bath and was recorded on physiograph connected to isometric transducer. And the strip was checked for expression of heat shock protein(Hsp) by Western blotting. One, three and eight hours later, we measured vascular contractility of isolated rat aorta treated with KCI, phenylephrine from organ bath study. The dose-vascular responses of potassium chloride and phenylephrine showed a little augmentation by NaCl concentration in the strips exposed to NaCl for 8 hours. And the response of relaxation induced by nitroprusside and acetylcholine was not influenced by NaCl stress in isolated aorta ring for 8 hours, respectively. Expression pattern of Hsp 70 of vascular muscle in isolated rat aorta showed a little increase in 150 mM NaCl group at 8 hours after NaCl treatment but not at 3 hours, and Hsp 60 expression of rat aorta was markedly increased in 50 mM NaCl group at 8 hours after NaCl treatment. Taken together, NaCl induced dose-and time dependent accumulation of the Hsp but not affected contraction of rat aorta. These data suggest that short term high salt stress was not sufficient to induce hypertension of rat aorta.

Muscarinic Receptor Subtype Controlling the Carbachol-Induced Muscle Contraction in Guinea Pig Gastric Antrum

  • Rhee, Jong-Chul;Uhm, Dae-Yong;Kang, Tong-Mook
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.2
    • /
    • pp.105-111
    • /
    • 2000
  • Stimulation of muscarinic receptors by carbachol (CCh) in the circular smooth muscle of the guinea pig gastric antrum causes muscle contraction. In the present study, muscarinic receptor subtype controlling the muscle contraction in response to CCh was studied using putative muscarinic receptor antagonists. Isometric force of the isolated circular muscle strips was measured in an organ bath. CCh contracted the muscle in a dose-dependent way, and each of the three muscarinic receptor antagonists, 4-diphenylacetoxy- N-methylpeperdine methiodide (4-DAMP), methoctramine and pirenzepine shifted the concentration- response curves to the right without significantly reducing the maximum force. The affinities of the muscarinic antagonists $(pA_2\;values)$ obtained from Schild plot analysis were 10.15, 7.05 and 6.84 for 4-DAMP, methoctramine and pirenzepine, respectively. These results suggest that the $M_3-subtype$ mainly mediate the muscle contraction in response to CCh in guinea pig gastric antrum.

  • PDF

Vasodilatory Effect of Complex Saponin Extracted from Platycodon grandiflorum and Glycyrrhiza uralensis Mixture Extract

  • Jung-Hwan Nam
    • Korean Journal of Plant Resources
    • /
    • v.35 no.6
    • /
    • pp.713-719
    • /
    • 2022
  • Platycodon grandiflorum and Glycyrrhiza uralensis contain several bioactive compounds, such as saponin, oleanolic acid, and flavone. P. grandiflorum and G. uralensis have traditionally been used to treat disorders related to blood pressure, diabetes, and counteracting poison, and they have antinociceptive and antiinflammatory properties. However, the validity of complex saponin's vasodilatory effect has not been scientifically investigated. Therefore, this study explores the vasodilatory effect of complex saponin extracted from P. grandiflorum and G. uralensis mixture extract on rabbit carotid arteries. To this end, arterial rings with intact or damaged endothelium were used in an organ bath experiment and contracted by endothelin. Complex saponins, the major active constituents of P. grandiflorum and G. uralensis mixture extract, exhibited a moderate vasodilatory effect on the rabbit's basilar arteries. Therefore, treatment with complex saponin extracted from P. grandiflorum and G. uralensis mixture extract may selectively accelerate cerebral blood flow through basilar arterial dilation. Overall, the findings suggest that the extracted complex saponins can serve as vasodilator sources.

Changes of Vascular Contraction and Relaxation of Rat aorta under Arsenic Stress (비소 스트레스에 의한 흰쥐 대동맥의 수축과 이완반응의 변화양상)

  • 권윤정;박태규;성유진;김인겸;김중영
    • Journal of Life Science
    • /
    • v.13 no.5
    • /
    • pp.634-641
    • /
    • 2003
  • In order to examine whether arsenic, one of environmental stress, contribute to augumentation and relaxation of rat aorta, this study was performed in vivo and in vitro, using intacted or denuded rats aorta ring preparation, respectively. The carotid arterial pressure was recorded on an ink-writing physiograph(Grass Co. 79E) connected to strain gauge. The contractile response of vascular ring with or without endothelium preparation isolated from rat were determined in organ bath and was recorded on physiograph connected to isometric transducer. Vasopressin-,and phenylephrine- induced increase in arterial pressure significantly enhanced in arsenic-treated rats; increase of 19.1%, and 46.6%, respectively. Vascular contractile response was measured in vitro preparations exposed to 0, 0.5, 1, 2 and 4 mM of arsenic for 1, 3, 5 and 8 hours. The dose-vascular responses of phenylephrine augmented by increasing dose of arsenic in the strips exposed to arsenic for 8 hours, and did not augmented for 1, 3, 5 hours. The phenomenon was not affected by strips denuded endothelium. And the response of relaxation of rat aorta induced by nitroprusside was not influenced by arsenic stress, but acetylcholine was a little increased. compared to that of control. There were no significant difference in relaxation between control and arsenic treated rings with endothelium or denuded. All of the results, phenyleprine-induced vascular contraction was significantly enhanced in 4 mM arsenic-treated rat aortic rings compared with control, whether endothelium was present or denuded at 8 hours after arsenic treatment. It may be a mechanism by which long-term arsenic stresses play a role in development of hypertension.