• 제목/요약/키워드: PBPK modeling

검색결과 8건 처리시간 0.018초

생리학 기반 약물동태(PBPK, Physiologically Based Pharmacokinetic) 모델링을 이용한 소아 약물 동태 예측 연구 (Application of Physiologically Based Pharmacokinetic (PBPK) Modeling in Prediction of Pediatric Pharmacokinetics)

  • 신나영;박민호;신영근
    • 약학회지
    • /
    • 제59권1호
    • /
    • pp.29-39
    • /
    • 2015
  • In recent years, physiologically based pharmacokinetic (PBPK) modeling has been widely used in pharmaceutical industries as well as regulatory health authorities for drug discovery and development. Several application areas of PBPK have been introduced so far including drug-drug interaction prediction, transporter-mediated interaction prediction, and pediatric PK prediction. The purpose of this review is to introduce PBPK and illustrates one of its application areas, particularly pediatric PK prediction by utilizing existing adult PK data and in vitro data. The evaluation of the initial PBPK for adult was done by comparing with experimental PK profiles and the scaling from adult to pediatric was conducted using age-related changes in size such as tissue compartments, and protein binding etc. Sotalol and lorazepam were selected in this review as model drugs for this purpose and were re-evaluated using the PBPK models by GastroPlus$^{(R)}$. The challenges and strategies of PBPK models using adult PK data as well as appropriate in vitro assay data for extrapolating pediatric PK at various ages were also discussed in this paper.

정량적 구조-활성 상관 관계와 생리학 기반 약물동태를 사용한 새로운 선도물질 최적화 전략 (Novel Lead Optimization Strategy Using Quantitative Structure-Activity Relationship and Physiologically-Based Pharmacokinetics Modeling)

  • 변진주;박민호;신석호;신영근
    • 약학회지
    • /
    • 제59권4호
    • /
    • pp.151-157
    • /
    • 2015
  • The purpose of this study is to demonstrate how lead compounds are best optimized with the application of in silico QSAR and PBPK modeling at the early drug discovery stage. Several predictive QSAR models such as $IC_{50}$ potency model, intrinsic clearance model and brain penetration model were built and applied to a set of virtually synthesized library of the BACE1 inhibitors. Selected candidate compounds were also applied to the PBPK modeling for comparison between the predicted animal pharmacokinetic parameters and the observed ones in vivo. This novel lead optimization strategy using QSAR and PBPK modelings could be helpful to expedite the drug discovery process.

Prediction of pharmacokinetics and drug-drug interaction potential using physiologically based pharmacokinetic (PBPK) modeling approach: A case study of caffeine and ciprofloxacin

  • Park, Min-Ho;Shin, Seok-Ho;Byeon, Jin-Ju;Lee, Gwan-Ho;Yu, Byung-Yong;Shin, Young G.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권1호
    • /
    • pp.107-115
    • /
    • 2017
  • Over the last decade, physiologically based pharmacokinetics (PBPK) application has been extended significantly not only to predicting preclinical/human PK but also to evaluating the drug-drug interaction (DDI) liability at the drug discovery or development stage. Herein, we describe a case study to illustrate the use of PBPK approach in predicting human PK as well as DDI using in silico, in vivo and in vitro derived parameters. This case was composed of five steps such as: simulation, verification, understanding of parameter sensitivity, optimization of the parameter and final evaluation. Caffeine and ciprofloxacin were used as tool compounds to demonstrate the "fit for purpose" application of PBPK modeling and simulation for this study. Compared to caffeine, the PBPK modeling for ciprofloxacin was challenging due to several factors including solubility, permeability, clearance and tissue distribution etc. Therefore, intensive parameter sensitivity analysis (PSA) was conducted to optimize the PBPK model for ciprofloxacin. Overall, the increase in $C_{max}$ of caffeine by ciprofloxacin was not significant. However, the increase in AUC was observed and was proportional to the administered dose of ciprofloxacin. The predicted DDI and PK results were comparable to observed clinical data published in the literatures. This approach would be helpful in identifying potential key factors that could lead to significant impact on PBPK modeling and simulation for challenging compounds.

생물학적 모니터링 데이터를 기초한 PBPK 모델의 활용 (Application of Physiologically Based Pharmacokinetic Modeling with Biological Monitoring Data for Risk Assessment)

  • 양미희;양지연;이빛나;이호선
    • Environmental Analysis Health and Toxicology
    • /
    • 제22권1호
    • /
    • pp.1-8
    • /
    • 2007
  • Biological monitoring, analyses of internal dose for exposure to toxicants, has been thought as one of the belt approaches for risk assessment. As the amount detected in human samples is generally very low, typically in the parts-per-bilion (ppb) or parts-per-trillion (ppt) range, analytic technologies such at HPLC, GC/MS, LC/MS, and LC/MS/MS have been continuously developed. In addition, route specific and sensitive exposure biomarkers have been developed for proper biological monitoring. PBPK modeling, particularly reverse dosimetry, has been emphasized as an useful method via interpretation of biological monitoring results for regulation of toxicants. Thus, this review is focused on the use of PBPK dosimetry models for toxicology research and risk assessment in Korea.

Extrapolation of Hepatic Concentrations of Industrial Chemicals Using Pharmacokinetic Models to Predict Hepatotoxicity

  • Yamazaki, Hiroshi;Kamiya, Yusuke
    • Toxicological Research
    • /
    • 제35권4호
    • /
    • pp.295-301
    • /
    • 2019
  • In this review, we describe the absorption rates (Caco-2 cell permeability) and hepatic/plasma pharmacokinetics of 53 diverse chemicals estimated by modeling virtual oral administration in rats. To ensure that a broad range of chemical structures is present among the selected substances, the properties described by 196 chemical descriptors in a chemoinformatics tool were calculated for 50,000 randomly selected molecules in the original chemical space. To allow visualization, the resulting chemical space was projected onto a two-dimensional plane using generative topographic mapping. The calculated absorbance rates of the chemicals based on cell permeability studies were found to be inversely correlated to the no-observed-effect levels for hepatoxicity after oral administration, as obtained from the Hazard Evaluation Support System Integrated Platform in Japan (r = -0.88, p < 0.01, n = 27). The maximum plasma concentrations and the areas under the concentration-time curves (AUC) of a varied selection of chemicals were estimated using two different methods: simple one-compartment models (i.e., high-throughput toxicokinetic models) and simplified physiologically based pharmacokinetic (PBPK) modeling consisting of chemical receptor (gut), metabolizing (liver), and central (main) compartments. The results obtained from the two methods were consistent. Although the maximum concentrations and AUC values of the 53 chemicals roughly correlated in the liver and plasma, inconsistencies were apparent between empirically measured concentrations and the PBPK-modeled levels. The lowest-observed-effect levels and the virtual hepatic AUC values obtained using PBPK models were inversely correlated (r = -0.78, p < 0.05, n = 7). The present simplified PBPK models could estimate the relationships between hepatic/plasma concentrations and oral doses of general chemicals using both forward and reverse dosimetry. These methods are therefore valuable for estimating hepatotoxicity.

Addressing Early Life Sensitivity Using Physiologically Based Pharmacokinetic Modeling and In Vitro to In Vivo Extrapolation

  • Yoon, Miyoung;Clewell, Harvey J. III
    • Toxicological Research
    • /
    • 제32권1호
    • /
    • pp.15-20
    • /
    • 2016
  • Physiologically based pharmacokinetic (PBPK) modeling can provide an effective way to utilize in vitro and in silico based information in modern risk assessment for children and other potentially sensitive populations. In this review, we describe the process of in vitro to in vivo extrapolation (IVIVE) to develop PBPK models for a chemical in different ages in order to predict the target tissue exposure at the age of concern in humans. We present our on-going studies on pyrethroids as a proof of concept to guide the readers through the IVIVE steps using the metabolism data collected either from age-specific liver donors or expressed enzymes in conjunction with enzyme ontogeny information to provide age-appropriate metabolism parameters in the PBPK model in the rat and human, respectively. The approach we present here is readily applicable to not just to other pyrethroids, but also to other environmental chemicals and drugs. Establishment of an in vitro and in silico-based evaluation strategy in conjunction with relevant exposure information in humans is of great importance in risk assessment for potentially vulnerable populations like early ages where the necessary information for decision making is limited.

Prediction of Pharmacokinetics and Penetration of Moxifloxacin in Human with Intra-Abdominal Infection Based on Extrapolated PBPK Model

  • Zhu, LiQin;Yang, JianWei;Zhang, Yuan;Wang, YongMing;Zhang, JianLei;Zhao, YuanYuan;Dong, WeiLin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제19권2호
    • /
    • pp.99-104
    • /
    • 2015
  • The aim of this study is to develop a physiologically based pharmacokinetic (PBPK) model in intra-abdominal infected rats, and extrapolate it to human to predict moxifloxacin pharmacokinetics profiles in various tissues in intra-abdominal infected human. 12 male rats with intra- abdominal infections, induced by Escherichia coli, received a single dose of 40 mg/kg body weight of moxifloxacin. Blood plasma was collected at 5, 10, 20, 30, 60, 120, 240, 480, 1440 min after drug injection. A PBPK model was developed in rats and extrapolated to human using GastroPlus software. The predictions were assessed by comparing predictions and observations. In the plasma concentration versus time profile of moxifloxcinin rats, $C_{max}$ was $11.151{\mu}g/mL$ at 5 min after the intravenous injection and $t_{1/2}$ was 2.936 h. Plasma concentration and kinetics in human were predicted and compared with observed datas. Moxifloxacin penetrated and accumulated with high concentrations in redmarrow, lung, skin, heart, liver, kidney, spleen, muscle tissues in human with intra-abdominal infection. The predicted tissue to plasma concentration ratios in abdominal viscera were between 1.1 and 2.2. When rat plasma concentrations were known, extrapolation of a PBPK model was a method to predict drug pharmacokinetics and penetration in human. Moxifloxacin has a good penetration into liver, kidney, spleen, as well as other tissues in intra-abdominal infected human. Close monitoring are necessary when using moxifloxacin due to its high concentration distribution. This pathological model extrapolation may provide reference to the PK/PD study of antibacterial agents.

Physiologically Based Pharmacokinetic (PBPK) Modeling in Neurotoxicology

  • Kim, Chung-Sim
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1995년도 제3회 추계심포지움
    • /
    • pp.135-136
    • /
    • 1995
  • Resent advances in computer technology have introduced a sophisticated capability for computing the biological fate of toxicants in a biological system. This methodology, which has drastically altered risk assessment skill in toxicology, is designed using all the mechanistic information, and all claim better accuracy with extrapolating capability Iron animal to people than conventional pharmacokinetic methods. Biologically based mathematical models in which the specific mechanistic steps governing tissue disposition(pharmacokinetics) and toxic action (pharmacodynamics) of chemicals are constructed in quantitative terms by a set of equations loading to prediction of the outcome of specific toxicological experiments by computer simulation. pharmacokinetic and pharmacodynamic models are useful in risk assessment because their mechanistic biological basis permits the high-to-low dose, route to route and interspecies extrapolation of the tissue disposition and toxic action of chemicals.

  • PDF