• Title/Summary/Keyword: PC12 cells

Search Result 443, Processing Time 0.03 seconds

Effects of Gamishinchubogun-tang on Regeneration of PC12 Cells (가미신추보건탕(加味伸椎步建湯)이 PC12 세포의 재생에 미치는 영향)

  • Gu, Ji-Hyang;Lee, Chi-Ho;Lee, Eun-Jung
    • Journal of Haehwa Medicine
    • /
    • v.25 no.1
    • /
    • pp.37-44
    • /
    • 2016
  • Objectives : This study was designed to investigate the effect of Gamishinchubogun-tang (JiaweiShenzhuibujian-tang; GSB) on regeneration of PC12 cells. Methods : PC12 cells have been used extensively as a model for studying the cellular and molecular effects of neuronal cells. In order to check the effect of GSB on the regeneration of PC12 cells, the morphological change of PC12 cells were observed comparatively in GSB group and control group. Results : The significant changes in neurite length of PC12 cells have been observed on GSB group. In proportion to the concentration of GSB it was observed an increase in neurite outgrowth. Conclusions : This study confirmed that GSB made a significant influence on regeneration of PC12 cells.

Screening of active substance FS11052 as an inhibitor of neurotransmitter release from PC12 cells (PC12 세포에서 신경전달물질 방출을 저해하는 생리활성물질 FS11052의 탐색)

  • Lee, Yun-Sik;Lee, John Hwa
    • Korean Journal of Veterinary Research
    • /
    • v.46 no.2
    • /
    • pp.87-96
    • /
    • 2006
  • We established an in vitro experimental system using the following procedure. We first introduced tritium-labeled norepinephrine ([$^3$H]-NE) into PC12 cells, The [$^3$H]-NE incorporated into PC12 cells were then stimulated by a high concentration (60 mM) of $K^+$ buffer during 12 minutes. Then, we collected $100{\mu}l$ supernatant and counted the amount of [$^3$H]-NE release from PC12 cells with a scintillation counter. After screening fungal, Streptomyces spp. or bacterial product using this experimental sytem, we obtained FS11052 from Streptomyces spp. which inhibited [$^3$H]-NE release from PC12 cells. FS11052 also inhibits the release of ATP as a neurotransmitter of PC12 cells and rat cortical neurons, The inhibitory effect was seen even when the PC12 cells were treated with low $K^-$ buffer containing ionomycin ($1{\mu}M$) as an ionopore. This result suggests that the inhibitory action of FS11052 on neurotransmitter release appeared after the influx of $Ca^{2+}$.

Differential Effect of Harmalol and Deprenyl on Dopamine-Induced Mitochondrial Membrane Permeability Change in PC12 Cells

  • Lee, Chung-Soo
    • Biomolecules & Therapeutics
    • /
    • v.12 no.1
    • /
    • pp.9-18
    • /
    • 2004
  • Opening of the mitochondrial permeability transition pore has been recognized to be involved in cell death. The present study investigated the effect of ${\beta}$-carbolines (harmaline and harmalol) and deprenyl on the dopamine-induced change in the mitochondrial membrane permeability and cell death in differentiated PC12 cells. Cell death due to 250 4{\mu}$M dopamine was inhibited by caspase inhibitors (z-IETD.fmk, z-LEHD.fmk and z-DQMD.fmk) and antioxidants (N-acetylcysteine, ascorbate, superoxide dismutase, catalase and carboxy-PTIO). ${\beta}$-Carbolines prevented the dopamine-induced cell death in PCl2 cells, while deprenyl did not inhibit cell death. ${\beta}$-Carbolines decreased the condensation and fragmentation of nuclei caused by dopamine in PC12 cells. ${\beta}$-Carbolines inhibited the decrease in mitochondrial transmembrane potential, cytochrome c release, formation of reactive oxygen species and depletion of GSH caused by dopamine in PC12 cells, whereas deprenyl did not decrease dopamine-induced mitochondrial damage. ${\beta}$-Carbolines, deprenyl and antioxidants depressed the formation of nitric oxide and melanin in dopamine-treated PC12 cells. The results suggest that cell death due to dopamine PC12 cells is mediated by caspase-8, -9 and -3. Unlike deprenyl, ${\beta}$-carbolines may attenuate the dopamineinduced cell death in PC12 cells by suppressing change in the mitochondrial membrane permeability through inhibition of the toxic action of reactive oxygen and nitrogen species.

Enhancement of ATP-induced Currents by Phospholipase D1 Overexpressed in PC12 Cells

  • Park, Jin-Bong;Kim, Young-Rae;Jeon, Byeong-Hwa;Park, Seung-Kiel;Oh, Sae-Ock;Kim, Young-Geun;Lee, Sang-Do;Kim, Kwang-Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.4
    • /
    • pp.223-229
    • /
    • 2003
  • Using phospholipase D1 (PLD1)-overexpressing PC12 (PLD1-PC12) cells, the regulatory roles of PLD1 on ATP-induced currents were investigated. In control and PLD1-PC12 cells, ATP increased PLD activity in an external $Ca^{2+}$ dependent manner. PLD activity stimulated by ATP was substantially larger in PLD1-PC12 cells than in control cells. In whole-cell voltage-clamp mode, ATP induced transient inward and outward currents. The outward currents inhibited by TEA or charybdotoxin were significantly larger in PLD1-PC12 cells than in control cells. The inward currents known as $Ca^{2+}$ permeable nonselective cation currents were also larger in PLD1-PC12 cells than in control cells. However, the difference between the two groups of cells disappeared in $Ca^{2+}$-free external solution, where ATP did not activate PLD. Finally, ATP-induced $^{45}Ca$ uptakes were also larger in PLD1-PC12 cells than in control cells. These results suggest that PLD enhances ATP-induced $Ca^{2+}$ influx via $Ca^{2+}$ permeable nonselective cation channels and increases subsequent $Ca^{2+}$-activated $K^+$ currents in PC12 cells.

Protective Effects of Boyanghwanoh-tang on Serum and Glucose Deprivation-induced Apoptosis of PC12 Cells (보양환오탕이 영양혈청결핍에 의한 PC12 세포의 고사에 미치는 영향)

  • 김종길;정승원;임준모;장호현;윤종민;이기상;문병순
    • The Journal of Korean Medicine
    • /
    • v.24 no.2
    • /
    • pp.179-192
    • /
    • 2003
  • Objectives : Boyanghwanoh-tang (Buyanhaiwu-tang) has been used as a prescription for stroke, senile and vascular dementia, ischemic brain and heart damage in Oriental traditional medicine. However, there is little known about the mechanism by which the water extracts of Boyanghwanoh-tang (Buyanhaiwu-tang) rescue cells fromthese damages, and little is known about the protective mechanisms of Boyanghwanoh-tang (Buyanhaiwu-tang) on oxidative stress in neuronal cells. Therefore, we have investigated the role of Boyanghwanoh-tang (Buyanhaiwu-tang) on serum and glucose deprived apoptosis in PC12 cells. Methods : PC12 Cells have been used extensively as a model for studying the cellular and molecular effects of neuronal cells. The viability of cells was measured by MIT assay. We used DNA fragmentation and caspase 1, 2, 3, 6, 9-likeproteases activation assay. Transcriptional activation of NF-kB was assessed by using electrophoretic mobility shift assay. Results : Boyanghwanoh-tang (Buyanhaiwu-tang) rescued PC12 cells from apoptotic death by serum and glucose deprivation in a dose-dependent manner. The nuclear staining of PC12 cells clearly showed that Boyanghwanoh-tang (Buyanhaiwu-tang) attenuated nuclear condensation and fragmentation, which represent typical neuronal apoptotic characteristics. Boyanghwanoh-tang (Buyanhaiwu-tang) also prevents fragmentation of genomic DNA and activation of caspase 3-like protease in serum and glucose deprived PC12 cells. Furthermore, Boyanghwanoh-tang (Buyanhaiwu-tang) reduced the activation of NF-kB by serum and glucose-deprived apoptosis. Conclusions : These findings suggest that serum and glucose deprivation induces reduced glutathione (GSH) depletion, and consequently, apoptosis through endogenously produced reactive oxygen species in PC12 cells. Also, our data indicated that Boyanghwanoh-tang (Buyanhaiwu-tang) has protective effects against the serum and glucose deprived deaths of PC12 cells, which are mediated by the generation of GSH that, in turn, can reduce oxidative stress caused by reactive oxygen species (ROS) such as hydrogen peroxide.

  • PDF

Screeing of S9940 as an Inhibitor of Neurotransmitter Release from PC12 Cells (PC12 세포에서 신경전달물질 방출을 저해하는 물질 S9940 물질의 탐색)

  • Lee, Yun-Sik;Park, Kie-In
    • Toxicological Research
    • /
    • v.14 no.3
    • /
    • pp.341-348
    • /
    • 1998
  • We established an in vitro experimental system using the following procedure. We first introduced tritium-labelled norepinephrine ([3H]-NE)into PC12 cells. The [3H]-NE incorporated into PC12 cells were then stimulated by a high concentration (60 mM) of $K^+$ during 12 minutes. Then, we counted the amount of [3H]-NE release from PC12 cells with the scintillation counter. After screening fungal, Streptomyces or bacterial product using this experimental system, we obtained S9940 from Streptomyces spp. which inhibited [3H]-NE release from PC12 cells. S9940 also inhibits the release of ATP as a neurotransmitter of PC12 cells and rat cortical neurons. The inhibitory effect was seen even when the PC12 cells were treated with low $K^+$ buffer containing ionomycin $(1\muM)$ as an ionopore. This result suggests that the inhibitory action of S9940 on neurotransmitter release appeared after the influx of $Ca^{2+}$.

  • PDF

Cytosine Arabinoside-Induced PC12 Cell Death Pathway (Cytosine Arabinoside 유도된 PC12 세포의 사망 경로)

  • Yang, Bo-Gee;Yang, Byung-Hwan;Chai, Young-Gyu
    • Korean Journal of Biological Psychiatry
    • /
    • v.5 no.2
    • /
    • pp.219-226
    • /
    • 1998
  • Cytosine arabinoside(AraC) inhibits DNA synthesis and ${\beta}$-DNA polymerase, an enzyme involved in DNA repair. This, a potent antimitotic agent, is clinically used as an anticancer drug with side effect of severe neurotoxicity. Earlier reports suggested that inhibition of neuronal survival by AraC in sympathetic neuron may be due to the inhibition of a 2'-deoxycytidine-dependent process that is independent of DNA synthesis or repair and AraC induced a signal that is triggers a cascade of new mRNA and protein synthesis, leading to apoptotic cell death in cultured cerebellar granule cells. The present study would suggest whether caspase family(ICE/CED-3-like protease) involved in AraC-induced apoptosis pathway of PC12 cells. It was observed that treatment of PC12 cells with AraC led to decrease of viability by MTT assay and morphology changes, which did not suggest that AraC induced apoptosis in PC12 cells. The mRNA of caspase-1/caspase-3 were expressed in PC12 cells constitutively, and AraC did not activate caspase family. These results suggest that caspase-1/caspase-3 may not be required for AraC-induced cell death pathway in PC12 cells.

  • PDF

Role of Phospholipase C-delta1 in the Bradykinin Receptor-Mediated Signaling in PC 12 cells

  • Kim, Yong-Hyun;Kim, Kyong-Tai
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1998.06a
    • /
    • pp.31-31
    • /
    • 1998
  • The role of a phosphoinositide-specific phospholipase C, PLC-deltal, in the bradykinin receptor-mediated signaling pathway was investigated using a clone of stably overexpressed PLC-deltal in rat pheochromocytoma (PC12) cells. Stimulation with bradykinin induced significantly higher [Ca$\^$2+/]i rise in PLC-deltal-overexpressed cells (PC12-D1) than in the wild type (PC12-W) and the vector-transfected (PC12-V) cells.(omitted)

  • PDF

Involvement of Cytosolic Phospholipase $A_2$ in Nerve Growth Factor-Mediated Neurite Outgrowth of PC12 Cells

  • Choi, Soon-Wook;Yu, Eun-Ah;Lee, Young-Seek;Yoo, Young-Sook
    • BMB Reports
    • /
    • v.33 no.6
    • /
    • pp.525-530
    • /
    • 2000
  • The nerve growth factor (NGF) induces neuronal differentiation and neurite outgrowth of PC12 cells, whereas epidermal growth factors (EGF) stimulate growth and proliferation of the cells. In spite of this difference, NGF-or EGF-treated PC12 cells share various properties in cellular-signaling pathways. These include the activation of the phosphoinositide (PI)-3 kinase, 70 kDa S6 kinase, and in the mitogen-activated protein (MAP) kinase pathway, following the binding of these growth factors to intrinsic receptor tyrosine kinases (RTKs). Therefore, many studies have been attempted to access the critical signaling events in determining the differentiation and proliferation of PC12 cells. In this study, we investigated the cytosolic phospholipase $A_2$ ($cPLA_2$) in neurite behavior in order to identify the differences of signaling pathways between the NGF-induced differentiation and the EGF-induced proliferation of PC12 cells. We have showed here that the $cPLA_2$ was translocated from cytosol to membrane only in NGF-treated cells. We also demonstrated that this translocation is associated with NGF-induced activation of phospholipase $C-{\gamma}(PLC-{\gamma})$, which elevates intracellular $Ca^{2+}$ concentration. These results reveal that the translocation of $cPLA_2$ may be a requisite event in the neuronal differentiation of PC12 cells. Various phospholipase inhibitors were used to confirm the importance of these enzymes in the differentiation of PC12 cells. Neomycin B, a PLC inhibitor, dramatically inhibited the neurite outgrowth, and two distinct $PLA_2$ inhibitors, 4-bromophenacyl bromide (BPB) and arachidonyltrifluoro-methyl ketone ($AACOCF_3$) also suppressed the neurite outgrowth of the cells, as well Taken together, these data indicated that $cPLA_2$ is involved in NGF-induced neuronal differentiation and neurite outgrowth of PC12 cells.

  • PDF

Inhibitory Effects of Noscapine on Dopamine Biosynthesis in PC12 cells

  • Shin, Jung-Soo;Lee, Sang-Sun;Lee, Myung-Koo
    • Archives of Pharmacal Research
    • /
    • v.20 no.5
    • /
    • pp.510-512
    • /
    • 1997
  • The effects of noscapine a phthalide isoquinoline alkaloid, on dopamine biosynthesis and tyrosine hydroxylase (TH) activity in PC12 cells were investigated. Noscapine showed 74.6% inhibition on dopamine content in PC12 cells at a concentration of $20{\mu}M.$ $IC_{50}$ of noscapine was $6.8{\mu}M.$ TH activity was inhibited by the treatment of noscapine in PC12 cells (20.9% inhibition at 20 .mu.M). Therefore, the inhibition of TH activity by noscapine might be involved in at least one component of the reduction of dopamine biosynthesis in PC12 cells.

  • PDF