• Title/Summary/Keyword: PKC activity

Search Result 186, Processing Time 0.03 seconds

Overexpression of Protein Kinase $C{\beta}_1$ Restores Mitogenic Responses of Enterocytic Differentiated Colon Carcinoma Cells to Diacylglycerol and Basic FGF

  • Lee, Han-Soo
    • BMB Reports
    • /
    • v.30 no.3
    • /
    • pp.194-199
    • /
    • 1997
  • Previous studies have shown that the HD3 human enterocytic differentiated colon carcinoma cell lines having low $PKC{\beta}$ activity did not respond to diacylglycerol and basic FGF by growth and by activation of pp57 MAP kinase, but undifferentiated cell lines exhibiting high $PKC{\beta}$ activity did. To confirm a role of $PKC{\beta}$ in colonocyte mitogenesis, derivatives of HD3 cell line that stably overexpress a full-length of cDNA encoding the ${\beta}_1$ isoform of human PKC were generated. The abundance and activity of $PKC{\beta}$ in two of the these cell lines, PKC3 and PKC8 were much higher than those in the C1 control cell line that carries the vector lacking the $PKC{\beta}_1\;cDNA$ insert. Following exposure to diacylglycerol or basic FGF, proliferation of PKC3 and PKC8 cells increased about 50%; but this effect was not seen with the control C1 cells. Also, in contrast to the control cells, the $PKC{\beta}_1-overproducing$ cells displayed activation of pp57 MAP kinase when treated with diacylglycerol and basic FGF as undifferentiated cell lines did. These results provide direct evidence that $PKC{\beta}_1$ which plays a key role in mitogenic responses of colon carcinoma cells to diacylglycerol and basic FGF is down-regulated in enterocytic differentiation of colon cells.

  • PDF

Effects of PCB Congeners in Rodent Neuronal Cells in Culture : Effects of Chitosan (PCB 이성질체가 설치류 신경세포에 미치는 영향: 키토산의 효과)

  • Kim, Sun-Young;Lee, Hyun-Gyo
    • Environmental Analysis Health and Toxicology
    • /
    • v.22 no.3
    • /
    • pp.279-285
    • /
    • 2007
  • The present study attempted to analyze the mechanism of PCB-induced neurotoxicity with respect to the PKC signaling. Since the developing neuron is particularly sensitive to PCB-induced neurotoxicity, we isolated cerebellar granule cells derived from 7-day old SD rats and grew cells in culture for additional 7 days to mimic PND-14 conditions. Only non-coplanar PCBs at a high dose showed a significant increase of total PKC activity at $[^3H]PDBu$ binding assay, indicating that non-coplanar PCBs are more neuroactive than coplanar PCBs in neuronal cells. PKC isoforms were immunoblotted with respective monoclonal antibodies. PKC-alpha and-epsilon were activated with non-coplanar PCB exposure. The result suggests that coplanar PCBs have a PKC pathway different from non-coplanar PCBs. Activation of PKC with exposure was dampened with treatment of high molecular weight of chitosan. Chilean (M.W. > 1,000 kDa) inhibited the total activity of PKC induced by the non-coplanar PCBs. Translocation of PKC isoforms was also inhibited by the high molecular weight of chitosan. The study demonstrated that non-coplanar PCBs are more potent neurotoxic congeners than coplanar PCBs and the alteration of PKC activities by PCB exposure can be blocked with the treatment of chitosan. The results suggest a potential use of chitosan as a means of nutritional intervention to prevent the harmful effects of pollutant-derived diseases.

The Activity of Hypertension-related Protein Kinase C and the Relationship of Physical Therapy (고혈압-연관 단백질 부활효소 C의 활성과 물리치료의 상관성)

  • Kim, Jung-Hwan
    • The Journal of Korean Physical Therapy
    • /
    • v.20 no.3
    • /
    • pp.61-68
    • /
    • 2008
  • Purpose: Protein kinase C (PKC) is a member of a family of serine/threonine kinases that are activated by diacylglycerol (DG) and PKC stimulants. PKC play a key role in signal transduction, including muscle contraction, cell migration, apoptosis, cell proliferation and differentiation. However, the mechanism relating mitogen-activated protein kinases (MAPKs) and PKC, especially in the volume-dependent hypertensive state, remains unclear. Methods: In the present study, I investigated the relationship between PKC and MAPKs for isometric contraction, PKC translocation, and enzymatic activity from normotensive sham-operated rats (NSR) and aldosterone-analogue deoxycorticosterone acetate (DOCA) hypertensive rats (ADHR). Results: Systolic blood pressure was significantly increased in ADHR than in NSR. Physiological salt solution (PSS)-induced resting tension and the intracellular $Ca^{2+}$ concentration ([$Ca^{2+}{_i}$]) were different in the ADHR and NSR. The expression of PKC$\alpha$, PKC$\beta$II, PKC$\delta$, PKC$\varepsilon$ and PKC$\xi$ were different between the cytoplasmic and membranous fractions. However, expression of the PKC isoforms did not differ for the ADHR and NSR. The use of 12-deoxyphorbol 13-isobutyrate (DPB, a PKC stimulant) induced isometric contraction in $Ca^{2+}$-free medium, which was diminished in muscle strips from ADHR as compared to NSR. Increased vasoconstriction and phosphorylation induced by the use of 1 ${\mu}$M DPB were inhibited by treatment with 10 ${\mu}$M PD098059 and 10 ${\mu}$M SB203580, inhibitors of extracellular-regulated protein kinase 1/2 (ERK1/2) and p38 MAPK from ADHR, respectively. Conclusion: These results suggest that the development of aldosterone analogue-induced hypertension is associated with an altered blood pressure, resting tension, [$Ca^{2+}{_i}$], and that the $Ca^{2+}$-independent contraction evoked by PKC stimulants is due to the activation of ERK1/2 and p38 MAPK in volume-dependent hypertension. Therefore, it is suggested that PKC activity affects volume-dependent hypertension and the need to develop cardiovascular disease-specialized physical therapy.

  • PDF

Requirement of Protein Kinase C Pathway during progesterone-induced Oocyte Maturation in Amphibian, Rana dybowskii

  • Bandyopadhyay, Jaya;Bandyopadhyay, Arun;Kang, Hae-Mook;Kwon, Hyuk-Bang;Choi, Hueng-Sik
    • Animal cells and systems
    • /
    • v.2 no.1
    • /
    • pp.87-91
    • /
    • 1998
  • The present study investigated the involvement of the phospholipase C (PLC) and protein kinase C (PKC) signaling pathways during progesteroneinduced meiotic maturation in amphibian (Rana dybowskii) oocytes. Prosesterone-induced germinal vesicle breakdown (GVBD) of oocytes was significantly inhibited by a PKC inhibitor, staurosporine and a PLC inhibitor, U73122, in a dose-dependent manner. In contrast, U73343, an inactive analogue of U73122, was ineffective in suppressing GVBD. PKC activity in oocytes reached a maximum level at 30 min after progesterone stimulation and this elevated PKC activity was effectively suppressed by U73122 or staurosporine, suggesting that the activation of PKC enzyme is closely linked to PLC signaling during oocyte maturation. In addition, these inhib itors blocked the maturation promoting factor (MPF) activity which appeared in oocytes in response to progesterone, suggesting that PKC activation is an important signal for MPF activity. Therefore, this study demonstrates that the activation of PKC via PLC signaling is directly linked to an intracellular protein kinase cascade related to the appearance of MPF activity during meiotic maturation in amphibian (Rana dybowskii) oocytes.

  • PDF

Protein kinase C-mediated Stimulatory Effect of $Ginsenoside-{Rg_1}$ on the Proliferation of SK-HEP-1 (SK-HEP-1 사람 간세포에서 Protein kinase C 신호전달체계를 통한 $인삼사포닌-{Rg_1}$의 DNA 합성 촉진 효과)

  • 공희진;이광열;정은아;이유희;김신일;이승기
    • YAKHAK HOEJI
    • /
    • v.39 no.6
    • /
    • pp.661-665
    • /
    • 1995
  • Ginsenoside-Rg$_{1}$(G-Rg$_{1}$) has been shown to stimulate DNA synthetic activity in SK-HEP-1 cells. This study was therefore designed to determine in SK-HEP-1 cells whether the stimulatory effect of G-Rg$_{1}$ may be mediated by protein kinase C (PKC) which is known to play a key role in the signal transduction pathway leading to the cell proliferation. Using the tn situ PKC assay method, the PKC enzyme activity was determined in SK-HEP-1 cell cultures in response to G-Rg$_{1}$ at 3*10$^{-5}$ M or phorbol 12-myristate 13-acetate(PMA) at 10$^{-6}$ M which in the enzyme activity by 1.5- and 7-fold, respectively. Furthermore, G-Rg$_{1}$, was also able to synergistically increase the enzyme activity by 11-fold m the cell cultures in the presence of PMA. These stimulatory effects of G-Rg$_{1}$ or PMA on the DNA synthetic activity and the PKC activity were ablished by a specific PKC inhibitor, GF109203X. These results suggest that the stimulatory effect of G-Rg$_{1}$ on the DNA synthetic activity may be partly due to stimulation of PKC-mediated signal transduction pathway leading to the proliferation of SK-HEP-1 cells.

  • PDF

Isoforms of Protei,n Kinase C during the Differentiation of Chick Limb Mesenchvme (계배 간충직세포 분화과정에서의 Protein Kinase C Isoform들의 변화)

  • 손종경;강신성
    • The Korean Journal of Zoology
    • /
    • v.38 no.2
    • /
    • pp.286-293
    • /
    • 1995
  • The present studies were undertaken to examine the activitites of PKC isoforms in cultures of chick limb mesenchvme. Micromass cultures were prepared using wing buds of stage 23/24 (Hamburger and Hamilton, 19511 chick embryo. The cells were homogenized and DEAE-cellulose column chromatography was performed to get fraction containing protein kinase C (PKC) activity. PKC isoforms were resolved with hvdroxyapatitie column chromatography. Profile of PKC isoforms of cultures were compared with that of rat brain. Activity of $PKC-\beta$ isoform was appeared at the early stage of chondrogenesis. On 3 daw of culture, activities of both PKC a and $\beta$ were observed with remarkable increase but no activity of y isoform was appeared. Treatment of phorbol-12-mvristate-13-acetate (PMA) (10-7 M) to the culture inhibited chondrosenesis and down-regulated a and $\beta$ isoforms. Staurosporine promoted chondro!genesis without any effect on PKC isioforms profile. These data indicate that PKC a and $\beta,$ especiallv $\beta$ isoform is related to chondrosenesis and the promoting effect of staurosporine on chondrogenesis is not related to PKC isoforms activities.

  • PDF

THE EFFECT OF PKC PATHWAY & MAPK PATHWAY ON RUNX2 TRANSCRIPTIONAL ACTIVITY (Protein kinase C 및 MAPK pathway가 Runx2의 전사 활성에 미치는 영향)

  • Kim, Eun-Jung;Kim, Hyun-Jung;Ryoo, Hyun-Mo;Kim, Hyun-Jung;Kim, Young-Jin;Nam, Soon-Hyeun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.29 no.3
    • /
    • pp.337-344
    • /
    • 2002
  • Runx2, a Runt-related osteoblast-specific transcription factor, is essential for osteoblast differentiation and function. Runx2 was identified as a key regulator of osteoblast-specific gene expression through its binding to the OSE2 element present in these genes. However, little is known about the signaling mechanism regulating Runx2 activity. This study examines the role of protein kinase C (PKC) pathway and mitogen-activated protein kinase (MAPK) pathway in regulating Runx2 and bone marker genes (osteopontin; OP, osteocalcin; OC). Luciferase assay and Northern blot analysis suggested that the stimulation of PKC by PMA increased transcription activity of Runx2 and bone marker genes (OP and OC) and also increased expression of Runx2. The stimulation of MAPK by okadaic acid increased transcription activity of Runx2 and bone marker genes (OP and OC). Pretreatment with PD98059 (Erk pathway inhibitor) and SB203580 (P38 pathway inhibitor) prior to PMA treatment decreased PMA stimulated Runx2 activity. Together these results indicate that both PKC and MAPKs are involved in the regulation of Runx2 activity and also the stimulation of Runx2 transcriptional activity by the PKC pathway is through activation of MAPK pathway.

  • PDF

2-Acetylaminofluorene의 면역독성 기작에 대한 연구

  • 이미가엘;양규환
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.04a
    • /
    • pp.318-318
    • /
    • 1994
  • Addition of AAF to murine splenocytes culture produced a dose-related suppression of lymphoproliferative response to lipopolysaccharide (LPS). The time course of the suppression showed that a significant inhibition was occured after a 18 hr AAF treatment. Total protein kinase C activity in splenocytes was decreased to 72% of control level after a 18 hr AAF treatment. Phosphorylation of a PKC specific 80 kDa protein was increased by LPS and AAF down-regulated LPS-induced PKC activity. LPS-induced phosphorylation of overall proteins in membrane and cytosolic fraction were also decreased by the treatment of AAF. A significant increase of PKC activity in membrane fraction was noticed within 10 min of AAF treatment compared to LPS alone and then gradually decreased to LPS level in 60 min. Meanwhile, PKC activity in cytosolic fraction was increased slightly in 10 min by the treatment of AAF and then decrease to 80% LPS level in 30 min. These results suggested that suppressive effect of AAF on LPS-induced lymphoproliferative response may be associated with the down-regulation of PKC and other susceptible kinases in spleen cells.

  • PDF

PKC Downstream of PI3-Kinase Regulates Peroxynitrite Formation for Nrf2-Mediated GSTA2 Induction

  • Kim, Sang-Geon;Kim, Sun-Ok
    • Archives of Pharmacal Research
    • /
    • v.27 no.7
    • /
    • pp.757-762
    • /
    • 2004
  • The protective adaptive response to electrophiles and reactive oxygen species is mediated by the induction of phase II detoxifying genes including glutathione S-transferases (GSTs). NF-E2-related factor-2 (Nrf2) phosphorylation by protein kinase C (PKC) is a critical event for its nuclear translocation in response to oxidative stress. Previously, we have shown that peroxynitrite plays a role in activation of Nrf2 and Nrf2 binding to the antioxidant response element (ARE) via the pathway of phosphatidylinositol 3-kinase (PI3-kinase) and that nitric oxide synthase in hepatocytes is required for GSTA2 induction. In view of the importance of PKC and Pl3-kinase in Nrf2-mediated GST induction, we investigated the role of these kinases in peroxynitrite formation for GSTA2 induction by oxidative stress and determined the relationship between PKC and PI3-kinase. Although PKC activation by phorbol 12-myristate-13-acetate (PMA) did not increase the extents of constitutive and inducible GSTA2 expression, either PKC depletion by PMA or PKC inhibition by staurosporine significantly inhibited GSTA2 induction by tert-butylhydroquinone (t-SHa) a prooxidant chemical. Therefore, the basal PKC activity is req- uisite for GSTA2 induction. 3-Morpholinosydnonimine (SIN-1), which decomposes and yields peroxynitrite, induced GSTA2, which was not inhibited by PKC depletion, but slightly enhanced by PKC activation, suggesting that PKC promotes peroxynitrite formation for Nrf2-mediated GSTA2 induction. Treatment of cells with S-nitroso-N-acetyl-penicillamine (SNAP), an exogenous NO donor, in combination with t-BHQ may produce peroxynitrite. GSTA2 induction by SNAP + t-BHQ was not decreased by PKC depletion, but rather enhanced by PKC activation, showing that the activity of PKC might be required for peroxynitrite formation. LY294002 a P13-kinase inhibitor blocked GSTA2 induction by t-BHQ, which was reversed by PMA-induced PKC activation. These results provide evidence that PKC may playa role in formation of peroxynitrite that activates Nrf2 for GSTA2 induction and that PKC may serve an activator for GSTA2 induction downstream of PI3-kinase.

Chlorination of ortho-position on Polychlorinated Biphenyls Increases Protein Kinase C Activity in Neuronal Cells

  • Lee, Youn-Ju;Yang, Jae-Ho
    • Toxicological Research
    • /
    • v.28 no.2
    • /
    • pp.107-112
    • /
    • 2012
  • Polychlorinated biphenyls (PCBs) are persistent and bioaccumulative environmental pollutants. Recently, it is suggested that neurotoxic effects such as motor dysfunction and impairment in memory and learning have been associated with PCB exposure. However, structure relationship of PCB congeners with neurotoxic effects remains unknown. Since PKC signaling pathway is implicated in the modulation of motor behavior as well as learning and memory and the role of PKC are subspecies-specific, we attempted to study the effects of structurally distinct PCBs on the total PKC activity as well as subspecies of PKC in cerebellar granule cell culture model. Cells were exposed to 0, 25 and 50 ${\mu}M$ of PCB-126, PCB-169, PCB-114, PCB-157, PCB-52 and PCB-4 for 15 min. Cells were subsequently analyzed by [$^3H$] phorbol ester binding assay or immunoblotted against PKC-${\alpha}$ and -${\varepsilon}$ monoclonal antibodies. While non-dioxin-like-PCB (PCB-52 and PCB-4) induced a translocation of PKC-${\alpha}$ and -${\varepsilon}$ from cytosol to membrane fraction, dioxin-like PCBs (PCB-126, -169, -114, -157) had no effects. [$^3H$] Phorbol ester binding assay also revealed structure-dependent increase similar to translocation of PKC isozymes. While PCB-4 induced translocation of PKC-${\alpha}$ and -${\varepsilon}$ was inhibited by ROS inhibitor, the pattern of translocation was not affected in presence of AhR inhibitor. It is suggested that PCB-4-induced PKC activity may not be mediated via AhR-dependent pathway. Taken together, our findings suggest that chlorination of ortho-position in PCB may be a critical structural moiety associated with neurotoxic effects, which may be preferentially mediated via non-AhR-dependent pathway. Therefore, the present study may contribute to understanding the neurotoxic mechanism of PCBs as well as providing a basis for establishing a better neurotoxic assessment.