• 제목/요약/키워드: Particle Collection Efficiency

검색결과 203건 처리시간 0.039초

A Study on the Collection Characteristics of Submicron Particles in an Electrostatic Precipitator - II. Collection Efficiency Characteristics (전기 집진기에서의 Submicron 입자의 집진 특성에 관한 연구-II. 집진 효율 특성)

  • 김용진;여석준;유주식
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • 제13권7호
    • /
    • pp.579-587
    • /
    • 2001
  • This study investigates particle collection characteristics of a cylindrical electrostatic precipitator. Experimental work has been made for the submicron particles. The effects of polarity of discharge electrode wire, particle diameter, gas velocity, gas temperature, and specific corona power on the particle collection efficiency are investigated. The efficiency of negative corona is higher than that of positive corona. as the particle diameter increases, the efficiency is decreased when the diameter is in the range of 0.02-0.6 micron, but is increased for the nanometer particles with diameter smaller than 0.02 micron. The efficiency is increased with increase of specific corona power. As the gas temperature increases, overall collection efficiency is increased for a negative corona, but is deceased for a positive corona.

  • PDF

Collection Characteristics of a MOUDI Cascade Impactor for Coarse Particles (다단 임팩터(MOUDI)의 조대 입자 채취 특성)

  • 배귀남;지준호;문길주
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제15권6호
    • /
    • pp.799-804
    • /
    • 1999
  • Particle collection characteristics of the MOUDI cascade impactor has been studied for coarse particles in the range of 2 to 20$mu extrm{m}$ in aerodynamic diameter. A vibrating orifice aerosol generator was empolyed to generate monodisperse test aerosols. The oleic acid and sodium chloride(NaCl) particles were used as test aerosols. Aluminum foil and Teflon filter were selected as impaction media. The sampling flow rate was changed from 25 to 35L/min. Particle collection efficiency for single stage was examined for liquid particles. The stage response was obtained experimentally for the cascade impactor composed of three stages and a backup filter. The results showed that most of particle collection efficiencies measured in this work are similar to the efficiency curves obtained by Marple et al.(1991). For particles less than cut-off size of the stage, the collection efficiencies of solid particles are similar to those of loquid particles. However, the collection efficiency of solid particles decreases with mereasing particle diameter for the particles greater than the actual cut-off size of the impactor. The particle collection efficiency increases with increasing sampling flow rate at the same particel size. However, the collection efficiency curves seem not to be greatly shifted with the flow rate. The stage responses obtained by direct measurements in this work are in good agreement with those derived from the collection efficiency curves for single stage.

  • PDF

An Experimental Study on Particle Collection Efficiency of the Slit Impactor (슬릿 임팩터의 입자 포집 효율에 관한 연구)

  • 황창덕;허재영;김상수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • 제13권4호
    • /
    • pp.689-696
    • /
    • 1989
  • In this experimental study, relative particle size distribution was measureed at the inlet and outlet of the slit impactor using the particle sizer. The imployed measuring method of the size distribution was different from the conventional method. This measurement system has the advantage of obtaining the particle collection efficiency for various particle size easily and at once compared with other methods. The effects of jet to plate distance and Reynolds number on the characteristic impactor efficiency curves have been studied. In the results of this experiment, the increment of collection efficiency was observed as Reynolds number increases in the case of S/W = 1/2 but was very slight. The influence of S/W is more remarkable than that of Reynolds number on the particle collection efficiency.

Effects of the Block Arrangement on the Collection Efficiency in the Two-Stage Electrostatic Precipitator with Charging Plate (평판형 방전판을 갖는 2단식 전기집진기의 집진판 블록배열이 집진효율에 미치는 영향)

  • 박성호;박청연;김태권
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제16권6호
    • /
    • pp.641-652
    • /
    • 2000
  • The effect of block arrangement has been investigated on the particle deposition in the specified collecting cell of two-stage electrostatic precipitator by numerical analysis. Recirculation zone existed at the downstream of the block in the collecting cell, and the particles entering the recirculation zone were deposited on the collecting plate. Particle trajectory and deposition had considerably different phenomenon according to electrostatic and inertial effect, which depended on inlet mean velocity, electrostatic number, and particle diameter in the collecting cell. The total collection efficiency reached a minimum value through an interaction of electrostatic and inertial effect. In the computational domain, total collection efficiency for the case of two blocks in the computational domain was more than that of one block at the relative small electrostatic number. However as the block distance and inertial effect increased, the difference between the collection efficiency of two cases decreased. In the range of relatively small particle size total collection efficiency was always superior to particle collection efficiency that was predicted by Deutsch equation.

  • PDF

Study on improvement of submicron particle collection performance in 2-stage parallel-plate electrostatic precipitators (2단 평행판 전기집진기의 서브마이크론입자 집진성능 개선 연구)

  • Yoo, K.H.;Oh, M.D.;Lee, J.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • 제9권3호
    • /
    • pp.323-332
    • /
    • 1997
  • It was reported by some researchers that two-stage parallel-plate ESPs, commonly called electronic air cleaners, show decreasing behavior of collection efficiency as particle size decreases below about $0.03{\mu}m$. This phenomenon is attributed to partial particle charging characteristics, where some of incoming particles are not charged in the charging cell of 2-stage parallel-plate ESP. One way to improve the decreasing collection efficieny in that particle size range is to enforce particle charging quantity in the charging cell. In the present study, in order to do this a 2-wire series-type charging cell modified from a 1-wire normal-type one was suggested and investigated theoretically and experimentally concerning improvement of the collection efficiency. It was confirmed from the experimental and theoretical works that the collection efficiency was apparently improved.

  • PDF

Design and Performance Evaluation of a Three Stage Impactor (대기 에어로졸 측정용 3단 임팩터의 설계 및 성능평가)

  • 지준호;배귀남;황정호
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제17권6호
    • /
    • pp.441-450
    • /
    • 2001
  • A three stage impactor with the cutoff diameters of 1, 2.5, and 10$\mu\textrm{m}$ in aerodynamic diameter was developed and tested. The gravimetric method and the particle counting method were utilized to evaluate the collection performance of each stage. A vibrating orifice aerosol generator was employed to generate monodisperse test aerosols larger that 2$\mu\textrm{m}$ in diameter. Polystyrene latex (PSL) particles smaller than 2$\mu\textrm{m}$ in diameter were generated by an atomizer and the particle number concentration was measured by an Aerodynamic Particle Sizer Spectrometer. The experimental cutoff diameters obtained from the particle collection efficiency curves are in good agreement with the designed values. The square roots of Stokes number at 50% collection efficiency for stage 1, 2, and 3 are 0.42, 0.48, and 0.45, respectively. Effects of the particle bounce and the impaction plate on the collection efficiency were investigated. The collection efficiency curves including effect of the particle bounce were also compared with those of the MOUDI cascade impactor.

  • PDF

Effects of Spray Surfactant and Particle Charge on Respirable Coal Dust Capture

  • Tessum, Mei W.;Raynor, Peter C.
    • Safety and Health at Work
    • /
    • 제8권3호
    • /
    • pp.296-305
    • /
    • 2017
  • Background: Surfactant-containing water sprays are commonly used in coal mines to collect dust. This study investigates the dust collection performance of different surfactant types for a range of coal dust particle sizes and charges. Methods: Bituminous coal dust aerosol was generated in a wind tunnel. The charge of the aerosol was either left unaltered, charge-neutralized with a neutralizer, or positively- or negatively-charged using a diffusion charger after the particles were neutralized. An anionic, cationic, or nonionic surfactant spray or a plain water spray was used to remove the particles from the air flow. Some particles were captured while passing through spray section, whereas remaining particles were charge-separated using an electrostatic classifier. Particle size and concentration of the charge-separated particles were measured using an aerodynamic particle sizer. Measurements were made with the spray on and off to calculate overall collection efficiencies (integrated across all charge levels) and efficiencies of particles with specific charge levels. Results: The diameter of the tested coal dust aerosol was $0.89{\mu}m{\pm}1.45$ [geometric $mean{\pm}geometric$ standard deviations (SD)]. Respirable particle mass was collected with $75.5{\pm}5.9%$ ($mean{\pm}SD$) efficiency overall. Collection efficiency was correlated with particle size. Surfactant type significantly impacted collection efficiency: charged particle collection by nonionic surfactant sprays was greater than or equal to collection by other sprays, especially for weakly-charged aerosols. Particle charge strength was significantly correlated with collection efficiency. Conclusion: Surfactant type affects charged particle spray collection efficiency. Nonionic surfactant sprays performed well in coal dust capture in many of the tested conditions.

Effects of Electrohydrodynamic Flow and Turbulent Diffusion on Collection Efficiency of an Electrostatic Precipitator with Cavity Walls

  • Park, Seok-Joo;Park, Young-Ok;Kim, Sang-Soo;McMurry, Peter H.
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.97-103
    • /
    • 2001
  • The effects of the electrohydrodynamic (EHD) flow and turbulent diffusion on the collection efficiency of a model ESP composed of the plates with a cavity were studied through numerical computation. The electric field and ion space charge density were calculated by the Poisson equation of the electrical potential and the current continuity equation. The EHD flow field was solved by the continuity and momentum equations of the gas phase including the electrical body force induced by the movement of ions under the electric field. The RNG $k-{\varepsilon}$ model was used to analyze the turbulent flow. The particle concentration distribution was calculated from the convective diffusion equation of the particle phase. As the ion space charge increased, the particulate collection efficiency increased because the electrical potential increased over the entire domain in the ESP. The collection efficiency decreased and then increased, i.e. had a minimum value, as the EHD circulating flow became stronger when the electrical migration velocity of the charged particle was low. However, the collection efficiency decreased with the stronger EHD flow when the electrical migration of the particle was higher relatively. The collection efficiency of the model ESP increased as the turbulent diffusivity of the particle increased when the electrical migration velocity of the particle was low. However, the collection efficiency decreased for increasing the turbulent diffusivity when the electrical migration of the particle was higher relatively.

  • PDF

Effect of Secondary Flows on the Particle Collection Efficiency in Single Stage Electrostatic Precipitator (1단 전기 집진기에서 2차 유동이 집진 효율에 미치는 영향)

  • Lee, Jae-Bok;Bae, Gwi-Nam;Hwang, Jung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제24권2호
    • /
    • pp.251-259
    • /
    • 2000
  • The ionic wind formed in a nonuniform electric field has been recognized to have a significant effect on particle collection in an electrostatic precipitator(ESP). Under normal operating conditions the effect of ionic wind is not pronounced. However, as the flow velocity becomes smaller, the ionic wind becomes pronounced and induces secondary flow, which has a significant influence on the flow field and the particle collecting efficiency. In this paper, experiments for investigating the effect of secondary flow on collection efficiencies were carried out by changing the flow velocities in 0.2-0.7m/s and the applied voltages in 9-11kV/cm. The particle size distributions and concentrations are measured by DMA and CNC. To analyze the experimental results, numerical analysis of electric filed in ESP was carried out. It shows that particle collection is influenced by two independent dimensionless numbers, $Re_{ehd}\;and\;Re_{flow}$ not by $N_{ehd}$ alone. When $Re_{flow}$, decreases for constant $Re_{ehd}$, the secondary flow prohibits the particle collection. But when $Re_{ehd}$ increases for constant $Re_{flow}$, it enhances the particle collection by driving the particles into the collection region.

Charge Depletion Effect on Collection Efficiency of an Electret Cabin Air Filter for Submicron Particles (승용차용 정전 필터 내의 정전 섬유의 보유 하전 감쇄에 의한 미세 입자 포집효율 변화)

  • Ji, Jun-Ho;Kang, Suk-Hoon;Hwang, Jung-Ho;Bae, Gwi-Nam
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.71-76
    • /
    • 2001
  • An electret filter is composed of permanently charged electet fibers and is widely used in applications requiring high collection efficiency and low-pressure drop. In this work, the collection efficiency of the filter media used in manufacturing cabin air filters was investigated by using poly-disperse particles when submicron particles are loaded. Long-term experiments were conducted by applying different charging states, which are spray electrification and charge equilibrium by bipolar ionization. In order to investigate on the effect of particle loading in filter media, NaCl particles were generated from 0.1% and 1% solutions by an atomizer. In NaCl 0.1%, the collection efficiency of electret filter decreased and then did not change in equilibrium state. In the case of relative larger particles of NaCl 1%, collection efficiency for the equilibrium charged particles increases due to the particle loading on the filter fibers. Particles charged by spray electrification are small in collection efficiency after equilibrium state and increase of filter media's pressure drop was very low in comparison of the equilibrium charged particles.

  • PDF