• Title/Summary/Keyword: Particle Simulation

Search Result 1,275, Processing Time 0.028 seconds

DISCRETE PARTICLE SIMULATION OF DENSE PHASE PARTICULATE FLOWS

  • Tsuji Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.11-19
    • /
    • 2005
  • First, methods of numerical analysis of gas-particle flows is classified into micro, meso and macro scale approaches based on the concept of multi-scale mechanics. Next, the explanation moves on to discrete particle simulation where motion of individual particles is calculated numerically using the Newtonian equations of motion. The author focuses on the cases where particle-to-particle interaction has significant effects on the phenomena. Concerning the particle-to-particle interaction, two cases are considered: the one is collision-dominated flows and the other is the contact-dominated flows. To treat this interaction mathematically, techniques named DEM(Distinct Element Method) or DSMC (Direct Simulation Monte Carlo) have been developed DEM, which has been developed in the field of soil mechanics, is useful for the contact -dominated flows and DSMC method, developed in molecular gas flows, is for the collision-dominated flows. Combining DEM or DSMC with CFD (computer fluid dynamics), the discrete particle simulation becomes a more practical tool for industrial flows because not only the particle-particle interaction but particle-fluid interaction can be handled. As examples of simulations, various results are shown, such as hopper flows, particle segregation phenomena, particle mixing in a rotating drum, dense phase pneumatic conveying, spouted bed, dense phase fluidized bed, fast circulating fluidized bed and so on.

  • PDF

Numerical study of Particle Motion in a Developing Mixing Layer using Large-eddy Simulation (LES를 이용한 발전하는 혼합층에서의 입자 운동에 관한 수치 해석 연구)

  • Kim, Tae-Jin;Seo, Tae-Won
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.94-99
    • /
    • 2001
  • The numerical simulation of the particle dispersion in the vortical flows provides insight into the mechanism of particle-fluid interaction. The simulation results show that the mixing layers are characterized by the large-scale vortical structures undergoing pairing process. The particle dispersion is strongly influenced by the large-scale structures and the particle sizes. The analysis shows that the mixing layers grows like a step-function.

  • PDF

Computer Simulation of Microstructure of Particle Sediment

  • Kim, Jong-Cheol;Keun Auh;David M. Martin
    • The Korean Journal of Ceramics
    • /
    • v.5 no.1
    • /
    • pp.30-34
    • /
    • 1999
  • Particle settling behavior was studied by the computer simulation using simultaneous particle condensation and relaxation. This three-dimensional settling algorithm includes the estimation of powder sediment density. Density distribution through the powder sediment was compared and was agreed well with the experimental findings. Settling density depended strongly of the degree of particle relaxation. Sediment strength and isotropy also depended on the degree of particle relaxation. Sever particle bridging was found near sharp corners.

  • PDF

Performance Comparison of Particle Simulation Using GPU Between OpenGL and Unity (OpenGL과 Unity간의 GPU를 이용한 Particle Simulation의 성능 비교)

  • Kim, Min Sang;Sung, Nak-Jun;Choi, Yoo-Joo;Hong, Min
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.10
    • /
    • pp.479-486
    • /
    • 2017
  • Recently, GPGPU has been able to increase the degradation of computer performance, and it is now possible to run physically based real-time simulations on PCs that require high computational complexity. Physical calculations applied in physics simulation can be performed by parallel processing, and can be efficiently performed using parallel computation using Compute shader recently supported by OpenGL 4.3 and Unity 4.0. In this paper, we measure and compare the number of performance in real - time physics simulation in OpenGL running on various platforms and Unity, a content creation tool supporting various platforms. Particle simulation experiments show that particle simulation using Unity performs faster than 136.04%. It is expected that it will be able to select better development tools for future multi - platform support.

Numerical analysis of particle transport in low-pressure, low-temperature plasma environment

  • Kim, Heon Chang
    • Particle and aerosol research
    • /
    • v.5 no.3
    • /
    • pp.123-131
    • /
    • 2009
  • This paper presents simulation results of particle transport in low-pressure, low-temperature plasma environment. The size dependent transport of particles in the plasma is investigated with a two-dimensional simulation tool developed in-house for plasma chamber analysis and design. The plasma model consists of the first two and three moments of the Boltzmann equation for ion and electron fluids respectively, coupled to Poisson's equation for the self-consistent electric field. The particle transport model takes into account all important factors, such as gravitational, electrostatic, ion drag, neutral drag and Brownian forces, affecting the motion of particles in the plasma environment. The particle transport model coupled with both neutral fluid and plasma models is simulated through a Lagrangian approach tracking the individual trajectory of each particle by taking a force balance on the particle. The size dependant trap locations of particles ranging from a few nm to a few ${\mu}m$ are identified in both electropositive and electronegative plasmas. The simulation results show that particles are trapped at locations where the forces acting on them balance. While fine particles tend to be trapped in the bulk, large particles accumulate near bottom sheath boundaries and around material interfaces, such as wafer and electrode edges where a sudden change in electric field occurs. Overall, small particles form a "dome" shape around the center of the plasma reactor and are also trapped in a "ring" near the radial sheath boundaries, while larger particles accumulate only in the "ring". These simulation results are qualitatively in good agreement with experimental observation.

  • PDF

FLUID SIMULATION METHODS FOR COMPUTER GRAPHICS SPECIAL EFFECTS (컴퓨터 그래픽스 특수효과를 위한 유체시뮬레이션 기법들)

  • Jung, Moon-Ryul
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.1-1
    • /
    • 2009
  • In this presentation, I talk about various fluid simulation methods that have been developed for computer graphics special effects since 1996. They are all based on CFD but sacrifice physical reality for visual plausability and time. But as the speed of computer increases rapidly and the capability of GPU (graphics processing unit) improves, methods for more physical realism have been tried. In this talk, I will focus on four aspects of fluid simulation methods for computer graphics: (1) particle level-set methods, (2) particle-based simulation, (3) methods for exact satisfaction of incompressibility constraint, and (4) GPU-based simulation. (1) Particle level-set methods evolve the surface of fluid by means of the zero-level set and a band of massless marker particles on both sides of it. The evolution of the zero-level set captures the surface in an approximate manner and the evolution of marker particles captures the fine details of the surface, and the zero-level set is modified based on the particle positions in each step of evolution. (2) Recently the particle-based Lagrangian approach to fluid simulation gains some popularity, because it automatically respects mass conservation and the difficulty of tracking the surface geometry has been somewhat addressed. (3) Until recently fluid simulation algorithm was dominated by approximate fractional step methods. They split the Navier-Stoke equation into two, so that the first one solves the equation without considering the incompressibility constraint and the second finds the pressure which satisfies the constraint. In this approach, the first step introduces error inevitably, producing numerical diffusion in solution. But recently exact fractional step methods without error have been developed by fluid mechanics scholars), and another method was introduced which satisfies the incompressibility constraint by formulating fluid in terms of vorticity field rather than velocity field (by computer graphics scholars). (4) Finally, I want to mention GPU implementation of fluid simulation, which takes advantage of the fact that discrete fluid equations can be solved in parallel.

  • PDF

Numerical Study of Particle Collection and Entrainment in Electrostatic Precipitator (집진기내 입자 포집과 비산 문제에 대한 수치적 연구)

  • Kim, Ju-Hyeon;Kweon, Soon-Cheol;Kwon, Ki-Hwan;Lee, Sang-Hwan;Lee, Ju-Hee
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.1
    • /
    • pp.27-35
    • /
    • 2012
  • A numerical simulation for particle collection efficiency in a wire-plate electrostatic precipitator (ESP) has been performed. Method of characteristics and finite differencing method (MOC-FDM) were employed to obtain electric field and space charge density, and lattice boltzmann method (LBM) was used to predict the Electrohydrodynamic (EHD) flow according to the ion convection. Large eddy simulation (LES) was considered for turbulent flow and particle simulation was performed by discrete element method (DEM) which considered field charging, electric force, drag force and wall-collision. One way coupling from FDM to LBM was used with small and low density particle assumption. When the charged particle collided with the collecting plate, particle-wall collision was calculated for re-entertainment effect and the effect of gravity force was considered.

Simulation of Particle Beds with Combustion and Reduction in Steel Making Rotary Kilns (제철용 로터리 킬른 내의 연소 및 환원을 포함한 입자 거동 예측모사 해석)

  • Han, Woojoo;Jang, Kwonwoo;Han, Karam;Huh, Kang Y.
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.173-175
    • /
    • 2015
  • We simulate the particle bed motions with combustion and reduction in steel making rotary kilns. The particle bed motions are simulated by a Lagrangian approach called Discrete Phase Model (DPM). To reduce the number of tracking particles, the Coarse Grain Model (CGM) was applied. The model for particle motions showed good agreements with experimental results. In addition to the particle motion, the combustion and reduction simulation was performed. The combustion and reduction simulation can consider heat, mass and momentum transfer between the gas phase and particle beds.

  • PDF

Simulation of Aggregate Slump Test Using Equivalent Sphere Particle in DEM (등가 구형입자를 이용한 DEM에서의 골재 슬럼프 실험 모사)

  • Yun, Tae Young;Ahn, Sang Hyeok;Nam, Jueong Hee;Yoo, Pyeong Jun
    • International Journal of Highway Engineering
    • /
    • v.15 no.5
    • /
    • pp.21-29
    • /
    • 2013
  • PURPOSES: Simulation of aggregate slump test using equivalent sphere particle in DEM and its validity evaluation against lab aggregate slump test METHODS : In this research, aggregate slump tests are performed and compared with DEM simulation. To utilize spheric particles in YADE, equivalent sphere diameter concept is applied. As verification measures, the volume in slump cone filled with aggregate is used and it is compared with volume in slump cone filled with equivalent sphere particle. Slump height and diameter are also used to evaluate the suggested numerical method with equivalent concept RESULTS : Simulation test results show good agrement with lab test results in terms of loose packing volume, height and diameter of slumped particle clump. CONCLUSIONS : It is concluded that numerical simulation using DEM is applicable to evaluate the effect of aggregate morphological property in loose packing and optimum gradation determination based on the aggregate slump test simulation result.

Copper Particle Effect on the Breakdown Strength of Insulating Oil at Combined AC and DC Voltage

  • Wang, You-Yuan;Li, Yuan-Long;Wei, Chao;Zhang, Jing;Li, Xi
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.865-873
    • /
    • 2017
  • Converter transformer is the key equipment of high voltage direct current transmission system. The solid suspending particles originating from the process of installation and operation of converter transformer have significant influence on the insulation performance of transformer oil, especially in presence of DC component in applied voltage. Under high electric field, the particles easily lead to partial discharge and breakdown of insulating oil. This paper investigated copper particle effect on the breakdown voltage of transformer oil at combined AC and DC voltage. A simulation model with single copper particle was established to interpret the particle effect on the breakdown strength of insulating oil. The experimental and simulation results showed that the particles distort the electric field. The breakdown voltage of insulating oil contaminated with copper particle decreases with the increase of particle number, and the breakdown voltage and the logarithm of particle number approximately satisfy the linear relationship. With the increase of the DC component in applied voltage, the breakdown voltage of contaminated insulating oil decreases. The simulation results show that the particle collides with the electrode more frequently with more DC component contained in the applied voltage, which will trigger more discharge and decrease the breakdown voltage of insulating oil.