• Title/Summary/Keyword: Pathogen-associated molecular patterns

Search Result 43, Processing Time 0.03 seconds

Roles of ginsenosides in inflammasome activation

  • Yi, Young-Su
    • Journal of Ginseng Research
    • /
    • v.43 no.2
    • /
    • pp.172-178
    • /
    • 2019
  • Inflammation is an innate immune response that protects the body from pathogens, toxins, and other dangers and is initiated by recognizing pathogen-associated molecular patterns or danger-associated molecular patterns by pattern-recognition receptors expressing on or in immune cells. Intracellular pattern-recognition receptors, including nucleotide-binding oligomerization domain-like receptors (NLRs), absent in melanoma 2, and cysteine aspartate-specific protease (caspase)-4/5/11 recognize various pathogen-associated molecular patterns and danger-associated molecular patterns and assemble protein complexes called "inflammasomes." These complexes induce inflammatory responses by activating a downstream effector, caspase-1, leading to gasdermin D-mediated pyroptosis and the secretion of proinflammatory cytokines, such as interleukin $(IL)-1{\beta}$ and IL-18. Ginsenosides are natural steroid glycosides and triterpene saponins found exclusively in the plant genus Panax. Various ginsenosides have been identified, and their abilities to regulate inflammatory responses have been evaluated. These studies have suggested a link between ginsenosides and inflammasome activation in inflammatory responses. Some types of ginsenosides, including Rh1, Rg3, Rb1, compound K, chikusetsu saponin IVa, Rg5, and Rg1, have been clearly demonstrated to inhibit inflammatory responses by suppressing the activation of various inflammasomes, including the NLRP3, NLRP1, and absent in melanoma 2 inflammasomes. Ginsenosides have also been shown to inhibit caspase-1 and to decrease the expression of $IL-1{\beta}$ and IL-18. Given this body of evidence, the functional relationship between ginsenosides and inflammasome activation provides new insight into the understanding of the molecular mechanisms of ginsenoside-mediated antiinflammatory actions. This relationship also has applications regarding the development of antiinflammatory remedies by ginsenoside-mediated targeting of inflammasomes, which could be used to prevent and treat inflammatory diseases.

Binding Specificity of Philyra pisum Lectin to Pathogen-Associated Molecular Patterns, and Its Secondary Structure

  • Park, Byung Tae;Kim, Byung Sun;Park, Heajin;Jeong, Jaehoon;Hyun, Hanbit;Hwang, Hye Seong;Kim, Ha Hyung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.6
    • /
    • pp.547-551
    • /
    • 2013
  • We recently reported a Philyra pisum lectin (PPL) that exerts mitogenic effects on human lymphocytes, and its molecular characterization. The present study provides a more detailed characterization of PPL based on the results from a monosaccharide analysis indicating that PPL is a glycoprotein, and circular dichroism spectra revealing its estimated ${\alpha}$-helix, ${\beta}$-sheet, ${\beta}$-turn, and random coil contents to be 14.0%, 39.6%, 15.8%, and 30.6%, respectively. These contents are quite similar to those of deglycosylated PPL, indicating that glycans do not affect its intact structure. The binding properties to different pathogen-associated molecular patterns were investigated with hemagglutination inhibition assays using lipoteichoic acid from Gram-positive bacteria, lipopolysaccharide from Gram-negative bacteria, and both mannan and ${\beta}$-1,3-glucan from fungi. PPL binds to lipoteichoic acids and mannan, but not to lipopolysaccharides or ${\beta}$-1,3-glucan. PPL exerted no significant antiproliferative effects against human breast or bladder cancer cells. These results indicate that PPL is a glycoprotein with a lipoteichoic acid or mannan-binding specificity and which contains low and high proportions of ${\alpha}$-helix and ${\beta}$-structures, respectively. These properties are inherent to the innate immune system of P. pisum and indicate that PPL could be involved in signal transmission into Gram-positive bacteria or fungi.

Similarities of Tobacco Mosaic Virus-Induced Hypersensitive Cell Death and Copper-Induced Abiotic Cell Death in Tobacco

  • Oh, Sang-Keun;Cheong, Jong-Joo;Ingyu Hwang;Park, Doil
    • The Plant Pathology Journal
    • /
    • v.15 no.1
    • /
    • pp.8-13
    • /
    • 1999
  • Hypersensitive cell death of plants during incompatible plant-pathogen interactions is one of the efficient defense mechanisms of plants against pathogen infections. For better understanding of the molecular mechanisms involved in the plant hypersensitive response (HR), TMV-induced biotic plant cell death and CuSO4-induced abiotic plant cell death were compared in terms of expression patterns of ten different defense-related genes as molecular markers. The genes include five pathogenesis-related protein genes, two plant secondary metabolite-associated genes, two oxidative stress-related genes and one wound-inducible gene isolated from tobacco. Northern blot analyses revealed that a same set of defense-related genes was induced during both biotic and abiotic cell death but with different time and magnitude. The expression of defense-related genes in tobacco plants was temporarily coincided with the time of cell death. However, when suspension cell cultures was used to monitor the expression of defense-related genes, different patterns of the gene expression were detected. This result implies that three are common and, in addition, also different branches of signaling pathways leading to the induced expression of defense-related genes in tobacco during the pathogen- and heavy metal-induced cell death.

  • PDF

Host Responses from Innate to Adaptive Immunity after Vaccination: Molecular and Cellular Events

  • Kang, Sang-Moo;Compans, Richard W.
    • Molecules and Cells
    • /
    • v.27 no.1
    • /
    • pp.5-14
    • /
    • 2009
  • The availability of effective vaccines has had the most profound positive effect on improving the quality of public health by preventing infectious diseases. Despite many successful vaccines, there are still old and new emerging pathogens against which there is no vaccine available. A better understanding of how vaccines work for providing protection will help to improve current vaccines as well as to develop effective vaccines against pathogens for which we do not have a proper means to control. Recent studies have focused on innate immunity as the first line of host defense and its role in inducing adaptive immunity; such studies have been an intense area of research, which will reveal the immunological mechanisms how vaccines work for protection. Toll-like receptors (TLRs), a family of receptors for pathogen-associated molecular patterns on cells of the innate immune system, play a critical role in detecting and responding to microbial infections. Importantly, the innate immune system modulates the quantity and quality of long-term T and B cell memory and protective immune responses to pathogens. Limited studies suggest that vaccines which mimic natural infection and/or the structure of pathogens seem to be effective in inducing long-term protective immunity. A better understanding of the similarities and differences of the molecular and cellular events in host responses to vaccination and pathogen infection would enable the rationale for design of novel preventive measures against many challenging pathogens.

Gene Expression and Regulation of Wax Moth Transferrin by PAMPs and Heavy Metals

  • Han, Jik-Hyon;Lee, Ji-Sook;Lee, Chang-Seok;Koh, Sang-Kyun;Seo, Sook-Jae;Yun, Chi-Young
    • Animal cells and systems
    • /
    • v.13 no.3
    • /
    • pp.297-304
    • /
    • 2009
  • A complete mRNA sequence of transferrin from the wax moth, Galleria mellonella, was obtained, and compared with those of other species. We previously reported that the sequence was most similar to those of Manduca sexta and Bombyx mori. As in other moths, G. mellonella transferrin had only one iron-binding site at its N-terminal region. Semi-qRT PCR was conducted to investigate tissue-specific distribution and transcriptional regulation of the wax moth transferrin mRNA. Larval muscle and fat body contained larger quantity of mRNA than other tested tissues. In this study, it was observed that iron and cadmium regulated transferrin transcription, and this regulation pattern was tissue specific. Iron up-regulated transferrin mRNA level in fat body, while suppressed it in the Malpighian tubules and silk glands. Cadmium decreased the mRNA level in fat body, muscle, and Malpighian tubules, but significantly increased the mRNA level in silk glands. In addition, the mRNA expression was induced by all tested pathogen-associated molecular patterns (PAMPs) including LPS, lipoteichoic acid (LTA), glucan, and even chitin.

Upregulaton of Bradykinin Receptor Mediated by Nucleoside Diphosphate Kinase and Flagellin from Pseudomonas aeruginosa (Bradykinin Receptor의 발현에 미치는 녹농균유래 Nucleoside Diphosphate Kinase 및 Flagellin의 효과)

  • Kim, Yong-Jae;Shin, Hee-Sung;Jin, Shouguang;Ha, Un-Hwan
    • Korean Journal of Microbiology
    • /
    • v.50 no.4
    • /
    • pp.281-284
    • /
    • 2014
  • Immune defense responses against Pseudomonas aeruginosa infection play an important role in maintaining homeostasis in the human body. Previously, we reported that expression of the bradykinin receptor (BR) is induced in response to P. aeruginosa infection. However, the factors responsible for the induction was uncertain. Here, we found that the type III secretion system (T3SS) is responsible for the induction of BR expression, and nucleoside diphosphate kinase (Ndk), as a novel T3SS effector, mediates the upregulation. The Ndk-mediated expression of BR was not induced by fliC mutant treatment, indicating the involvement of flagellin, one of the well-known pathogen-associated molecular patterns (PAMPs). Taken together, this study demonstrated that Ndk cooperates with flagella in the development of defense responses against P. aeruginosa infection.

Classification of Meat-Based Listeria monocytogenes Using Whole-Cell Protein Patterns and Serotyping Analysis

  • Park, Si-Hong;Jung, Sang-Hoon;Kim, Hyun-Joong;Chung, Yun-Hee;Kim, Hae-Yeong
    • Food Science and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.324-327
    • /
    • 2006
  • The food-borne pathogen Listeria monocytogenes is commonly associated with meats and unpasteurized dairy products. To identify this pathogen in meats more efficiently than has been done in the past, we purchased meats from Korean markets and performed sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and serotyping analysis on Listeria organisms isolated from meat samples. Each Listeria species showed specific protein band patterns on SDS-PAGE. Whole-cell protein SDS-PAGE profiles indicated that the organisms isolated from meats sold in local Korean markets were L. monocytogenes with the serotypes 1/2a, 1/2b, 1/2c, and 4b. We suggest that it is possible to carry out molecular subtyping of L. monocytogenes using SDS-PAGE.

Pathogen Associated Molecular Pattern (PAMP)-Triggered Immunity Is Compromised under C-Limited Growth

  • Park, Hyeong Cheol;Lee, Shinyoung;Park, Bokyung;Choi, Wonkyun;Kim, Chanmin;Lee, Sanghun;Chung, Woo Sik;Lee, Sang Yeol;Sabir, Jamal;Bressan, Ray A.;Bohnert, Hans J.;Mengiste, Tesfaye;Yun, Dae-Jin
    • Molecules and Cells
    • /
    • v.38 no.1
    • /
    • pp.40-50
    • /
    • 2015
  • In the interaction between plants and pathogens, carbon (C) resources provide energy and C skeletons to maintain, among many functions, the plant immune system. However, variations in C availability on pathogen associated molecular pattern (PAMP) triggered immunity (PTI) have not been systematically examined. Here, three types of starch mutants with enhanced susceptibility to Pseudomonas syringae pv. tomato DC3000 hrcC were examined for PTI. In a dark period-dependent manner, the mutants showed compromised induction of a PTI marker, and callose accumulation in response to the bacterial PAMP flagellin, flg22. In combination with weakened PTI responses in wild type by inhibition of the TCA cycle, the experiments determined the necessity of C-derived energy in establishing PTI. Global gene expression analyses identified flg22 responsive genes displaying C supply-dependent patterns. Nutrient recycling-related genes were regulated similarly by C-limitation and flg22, indicating re-arrangements of expression programs to redirect resources that establish or strengthen PTI. Ethylene and NAC transcription factors appear to play roles in these processes. Under C-limitation, PTI appears compromised based on suppression of genes required for continued biosynthetic capacity and defenses through flg22. Our results provide a foundation for the intuitive perception of the interplay between plant nutrition status and pathogen defense.

Pathogenic Groups Identified Among Isolates of Rhynchosporium secalis

  • Arabi, Mohammad Imad Eddin;Al-Shehadah, Eyad;Jawhar, Mohammad
    • The Plant Pathology Journal
    • /
    • v.26 no.3
    • /
    • pp.260-263
    • /
    • 2010
  • Scald, caused by Rhynchosporium secalis has been the major yield-reducing factor for barley production during the last decade. In this study, pathogenic groups of R. secalis were identified to obtain a global picture of the assembly of isolates involved in Syrian populations which is essential for the development of scald-resistant barley cultivars. To identify a number of pathogenic groups, 49 isolates collected over ten years from major barley growing areas in Syria were evaluated on five differential barley genotypes. Genotypes presented a continuous range of response from highly susceptible to moderately resistant, but none were immune to the disease. A cluster analysis placed isolates in six distinct differential pathogenic groups. Mean disease rating of 39.24% was the separation point between avirulent and virulent reactions. Isolate Rs46 exhibited distinct differential virulence patterns associated with high frequency across all genotypes. Hence, the data presented here provides crucial information for future selection of isolates to develop durable barley scald resistance.

Multiple Roles of Peroxiredoxins in Inflammation

  • Knoops, Bernard;Argyropoulou, Vasiliki;Becker, Sarah;Ferte, Laura;Kuznetsova, Oksana
    • Molecules and Cells
    • /
    • v.39 no.1
    • /
    • pp.60-64
    • /
    • 2016
  • Inflammation is a pathophysiological response to infection or tissue damage during which high levels of reactive oxygen and nitrogen species are produced by phagocytes to kill microorganisms. Reactive oxygen and nitrogen species serve also in the complex regulation of inflammatory processes. Recently, it has been proposed that peroxiredoxins may play key roles in innate immunity and inflammation. Indeed, peroxiredoxins are evolutionarily conserved peroxidases able to reduce, with high rate constants, hydrogen peroxide, alkyl hydroperoxides and peroxynitrite which are generated during inflammation. In this minireview, we point out different possible roles of peroxiredoxins during inflammatory processes such as cytoprotective enzymes against oxidative stress, modulators of redox signaling, and extracellular pathogen- or damage-associated molecular patterns. A better understanding of peroxiredoxin functions in inflammation could lead to the discovery of new therapeutic targets.