• 제목/요약/키워드: Peripheral vestibular receptor

검색결과 5건 처리시간 0.186초

Changes in Vestibular Nerve Activity Following Acute Hypotension in Rats

  • Park, Byung-Rim;Kim, Min-Sun;Yee, Gue-Hyun;Moon, Myoung-Jin;Kim, Jae-Hyo;Jin, Yuan-Zhe;Kim, Yo-Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제7권2호
    • /
    • pp.85-89
    • /
    • 2003
  • The basic mechanism for the excitation of the peripheral vestibular receptors following acute hypotension induced by sodium nitroprusside (SNP) or hemorrhage was investigated in anesthetized rats. Electrical activity of the afferent vestibular nerve was measured after pretreatment with kynurenic acid, an NMDA receptor antagonist. The activity of the vestibular nerve at rest following acute hypotension induced by SNP or simulating hemorrhage was a greater increase than in control animals. The gain of the vestibular nerve with sinusoidal rotation following acute hypotension increased significantly compared to control animals. The acute hypotension induced by SNP or hemorrhage did not change the activity of the afferent vestibular nerve after kynurenic acid injection. These results suggest that acute hypotension produced excitation of the vestibular hair cells via glutamate excitotoxicity in response to ischemia.

Actions of Group I Metabotropic Glutamate Receptor Agonist on Synaptic Transmission and Ionic Currents in Rat Medial Vestibular Nucleus Neurons

  • Lee, Hae-In;Chun, Sang-Woo
    • International Journal of Oral Biology
    • /
    • 제34권4호
    • /
    • pp.215-222
    • /
    • 2009
  • Medial vestibular nucleus (MVN) neurons are involved in the reflex control of the head and eyes, and in the recovery of vestibular function after the formation of peripheral vestibular lesions. In our present study, whole cell patch clamp recordings were carried out on MVN neurons in brainstem slices from neonatal rats to investigate the actions of a group I metabotropic glutamate receptor (mGluR) agonist upon synaptic transmission and ionic currents. Application of the mGluR I agonist (S)-3,5- dihydroxyphenylglycine (DHPG) increased the frequency of miniature inhibitory postsynaptic currents (mIPSCs) but had no effect upon amplitude distributions. To then identify which of mGluR subtypes is responsible for the actions of DHPG in the MVN, we employed two novel subtype selective antagonists. (S)-(+)-$\alpha$-amino-a-methylbenzeneacetic acid (LY367385) is a potent competitive antagonist that is selective for mGluR1, whereas 2-methyl-6-(phenylethynyl)-pyridine (MPEP) is a potent noncompetitive antagonist of mGluR5. Both LY367385 and MPEP antagonized the DHPG-induced increase of mIPSCs, with the former being more potent. DHPG was also found to induce an inward current, which can be enhanced under depolarized conditions. This DHPG-induced current was reduced by both LY367385 and MPEP. The DHPG-induced inward current was also suppressed by the PLC blocker U-73122, the $IP_3$ receptor antagonist 2-APB, and following the depletion of the intracellular $Ca^{2+}$ pool by thapsigargin. These data suggest that the DHPG-induced inward current may be mainly regulated by the intracellular $Ca^{2+}$ store via the PLC-$IP_3$ pathway. In conclusion, mGluR I, via pre- and postsynaptic actions, may modulate the excitability of the MVN neurons.

Neuronal Activity of the Vestibular Nuclei Following Acute Hypotension in Rats

  • Park, Byung-Rim;Kim, Min-Sun;Baik, Kum-Hyun;Lee, Moon-Young;Choi, Myung-Ae;Lee, Jae-Hyo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제6권4호
    • /
    • pp.199-205
    • /
    • 2002
  • The role of peripheral vestibular receptors in acute hypotension was investigated in anesthetized rats. Acute hypotension was induced by either intravenous infusion of sodium nitroprusside (SNP) or by experimental hemorrhage, and electrical activity and expression of cFos-like immunoreactive (cFL) protein were measured in the medial vestibular nuclei (MVN). Blood pressure decreased proportionately to the does of intravenous SNP and to the volume of the hemorrhage. Blood pressure decreased 10, 30, 50% for the 5, 10, $15{\mu}g/kg$ SNP injection, respectively, and also decreased 30 and 50% after 1- and 2-ml blood loss, respectively, due to hemorrhage. In animals with intact labyrinths, acute hypotension induced by either intravenous infusion of SNP or hemorrhage produced different electrical activities with three different patterns in type I and II neurons of MVN. The responses of type I neurons showed excitatory in 2/3 of recorded neurons and inhibitory or no change in 1/3 of neurons, while the responses of type II neurons showed inhibitory in 2/3 of recorded neurons and excitatory or no change in 1/3 of neurons. In unilateral labyrinthectomized animals, 2/3 of type I neurons ipsilateral to the lesion showed an inhibitory response, and 2/3 of contralateral type I neurons showed an excitatory response after the induction of acute hypotension. The response patterns of type II neurons were opposite from those of the type I neurons. After 30% decrease in blood pressure, cFL protein expressed in the bilateral vestibular nuclei of control animals with intact labyrinths. Expression of cFL protein increased significantly proportionately to the reduction of blood pressure. The unilateral labyrinthectomized animals with acute hypotension produced expression of cFL neurons in contralateral vestibular nuclei to the lesion side, but not in ipsilateral vestibular nuclei. However, cFL protein was not expressed in bilateral vestibular nuclei after acute hypotension in bilateral labyrinthectomized animals. These results suggest that the peripheral vestibular receptors might play a significant role in controlling blood pressure following acute hypotension via activation of type I neurons and inhibition of type II neurons in the vestibular nuclei.

비위허약으로 변증된 전정신경염 환자의 삼출건비탕가감방을 포함한 한의 치료 치험 1례 (A Case Report of Korean Medicine Treatment Including Samchulgunbi-tang-gagambang in a Patient with Vestibular Neuritis)

  • 박예슬;김정희;송주연;유호룡;설인찬;김윤식
    • 대한한방내과학회지
    • /
    • 제44권4호
    • /
    • pp.757-764
    • /
    • 2023
  • Background: Vestibular neuritis is a common cause of acute unilateral peripheral vestibulopathy. Vestibular neuritis is the second most common disease among patients with dizziness. Clinical symptoms of vestibular neuritis include the sudden onset of vertigo with spontaneous nystagmus, unsteady gait, nausea, and vomiting that last from days to weeks. However, even after the vertigo disappears, difficulty maintaining balance while walking may persist for weeks to months. Antihistamines, serotonin receptor blockers, and benzodiazepine vestibular suppressants are widely used as symptomatic treatments to reduce the severity of symptoms that occur in the acute phase. Case Summary: A patient diagnosed with acute vestibular neuritis was treated with acupuncture, moxibustion, and herbal medicine. We used the visual analog scale (VAS) to assess each symptom and the vertigo score to observe the effect of treatment. After treatment, the VAS scores for each symptom and the vertigo score decreased, and the severity of nystagmus was reduced. Conclusion: This study suggests that Korean medicine treatments, including Samchulgunbi-tang-gagam, could be effective in improving the clinical symptoms of vestibular neuritis.

c-fos mRNA Expression in the Vestibular System following Hypergravity Stimulation in Rats

  • Jin Guang-Shi;Lee Jae-Hyo;Lee Jae-Hee;Lee Moon-Young;Kim Min-Sun;Jin Yuan Zhe;Song Jeong-Hoon;Park Byung-Rim
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제11권1호
    • /
    • pp.1-7
    • /
    • 2007
  • Altered environmental gravity, including both hypo- and hypergravity, may result in space adaptation syndrome. To explore the characteristics of this adaptive plasticity, the expression of immediate early gene c-fos mRNA in the vestibular related tissues following an exposure to hypergravity stimulus was determined in rats. The animals were subjected to a force of 2 g (twice earth's gravity) for 1, 3, or 12 h, and were examined poststimulus at 0, 2, 6, 12, and 24 h. RT-PCR (reverse transcription polymerase chain reaction) and real-time quantitative RT-PCR were adopted to analyze temporal changes in the expression of c-fos mRNA. The hypergravity stimulus increased the expression of c-fos mRNA in the vestibular ganglion, medial vestibular nucleus, inferior vestibular nucleus, hippocampus, cerebellum, and cortex. The peak expression occurred at 0 h poststimulation in animals stimulated with hypergravity for 1 h, and at 6 h poststimulus in those stimulated for 3 h. In contrast, those stimulated for 12 h exhibited dual peaks at 0 and 12 h poststimulus. Bilateral labyrinthectomy markedly attenuated the degree of c-fos mRNA expression. Glutamate receptor antagonist also dramatically attenuated the degree of c-fos mRNA expression. These results indicate that expression of c-fos mRNA in response to hypergravity occurs in the vestibular related tissues of the central nervous system, in which peripheral vestibular receptors and glutamate receptors play an important role. The temporal pattern of c-fos mRNA expression depended on the duration of the hypergravity stimulus.