• Title/Summary/Keyword: Phytases

Search Result 25, Processing Time 0.027 seconds

An Animal-Industrial Review on Phytic Acid and Phytase (Phytic Acid와 Phytase에 관한 동물산업적 고찰)

  • 양시용;김창원;강창원
    • Journal of Animal Environmental Science
    • /
    • v.7 no.2
    • /
    • pp.83-102
    • /
    • 2001
  • Phytic acid (myo-inositol hexaphosphate or IP6) is the major storage form of phosphorus in cereals and legumes, representing 18 to 88% of the total phosphorus. Phytate form of phosphorus is not readily utilized by monogastric animals and this result causes pollution problem by phosporus released in areas of intensive livestock production. The interaction between phytic acid and essential dietary minerals, protein, or vitamins is considered to be one of the primary factors limiting the nutritional values of cereals and legunes in monogastric animals. Attempts have been made to hydrolyze dietary phytic acid by phytases to improve the feed quality and to decrease the amount of phosphorus excreted by animals. Phytase(myo-inositol hexakisphosphate phosphohydrolase) hydrolyzes phytic acid to myo-inositol and phosphoric acid. Two types of phytases are known: 3-phytase (EC 3.1.3.8) and 6-phytase (EC 3.1.3.26), indicating the intial attack to the susceptable phosphoester bond. Because of its great industrial importance, there is ongoing interest in isolating new bacterial strains producing novel and efficient phytases.

  • PDF

Biochemical Characterization of a Psychrophilic Phytase from an Artificially Cultivable Morel Morchella importuna

  • Tan, Hao;Tang, Jie;Li, Xiaolin;Liu, Tianhai;Miao, Renyun;Huang, Zhongqian;Wang, Yong;Gan, Bingcheng;Peng, Weihong
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.12
    • /
    • pp.2180-2189
    • /
    • 2017
  • Psychrophilic phytases suitable for aquaculture are rare. In this study, a phytase of the histidine acid phosphatase (HAP) family was identified in Morchella importuna, a psychrophilic mushroom. The phytase showed 38% identity with Aspergillus niger PhyB, which was the closest hit. The M. importuna phytase was overexpressed in Pichia pastoris, purified, and characterized. The phytase had an optimum temperature at $25^{\circ}C$, which is the lowest among all the known phytases to our best knowledge. The optimum pH (6.5) is higher than most of the known HAP phytases, which is fit for the weak acidic condition in fish gut. At the optimum pH and temperature, MiPhyA showed the maximum activity level ($2,384.6{\pm}90.4{\mu}mol{\cdot}min^{-1}{\cdot}mg^{-1}$, suggesting that the enzyme possesses a higher activity level over many known phytases at low temperatures. The phytate-degrading efficacy was tested on three common feed materials (soybean meal/rapeseed meal/corn meal) and was compared with the well-known phytases of Escherichia coli and A. niger. When using the same amount of activity units, MiPhyA could yield at least $3{\times}$ more inorganic phosphate than the two reference phytases. When using the same weight of protein, MiPhyA could yield at least $5{\times}$ more inorganic phosphate than the other two. Since it could degrade phytate in feed materials efficiently under low temperature and weak acidic conditions, which are common for aquacultural application, MiPhyA might be a promising candidate as a feed additive enzyme.

Identification of Novel Phytase Genes from an Agricultural Soil-Derived Metagenome

  • Tan, Hao;Mooij, Marlies J.;Barret, Matthieu;Hegarty, Pardraig M.;Harrington, Catriona;Dobson, Alan D.W.;O'Gara, Fergal
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.1
    • /
    • pp.113-118
    • /
    • 2014
  • Environmental microorganisms are emerging as an important source of new enzymes for wide-scale industrial application. In this study, novel phytase genes were identified from a soil microbial community. For this, a function-based screening approach was utilized for the identification of phytase activity in a metagenomic library derived from an agricultural soil. Two novel phytases were identified. Interestingly, one of these phytases is an unusual histidine acid phosphatase family phytase, as the conserved motif of the active site of PhyX possesses an additional amino acid residue. The second phytase belongs to a new type, which is encoded by multiple open reading frames (ORFs) and is different to all phytases known to date, which are encoded by a single ORF.

Enzyme Kinetic Study for Degradation of Phytic acid by Phytase (Phytase에 의한 phytic acid의 분해 반응속도 연구)

  • Kim, Jae-Seok;Lee, Jae-Heung
    • KSBB Journal
    • /
    • v.26 no.4
    • /
    • pp.300-304
    • /
    • 2011
  • Phytases are hydrolytic enzymes that catalyze the sequential hydrolysis of phytic acid (myo-inositol-1,2,3,4,5,6-hexakisphosphate) to myo-inositols with lower numbers of phosphate groups. Two types of phytases have been identified which initiate hydrolysis of the phytic acid at either the 3- or 6- position of the inositol ring. In the present investigation, a mathematical model was proposed and computed to estimate maximum enzyme reaction rate constants which fit the experimental data obtained by other authors. Although the data points were scattered to some extent, good agreement was found between the model and the experiment data. It appears that the maximum rate constants of removal of the first, second, and third phosphate groups were not equal. Also there was neither a steady trend upward or downward in the rate constants with the stepwise hydrolysis reactions.

Comparative Enzymatic Hydrolysis of Bacillus amyloliquefaciens DS11 Phytase and Aspergillus ficuum Phytase in the Cannulated Pigs (Cannula를 장착한 돼지에서 Bacillus amyloliquefaciens DS11 Phytase와 Aspergillus ficuum Phytase의 역가 비교)

  • 장범수;박승춘;윤효인
    • Journal of Veterinary Clinics
    • /
    • v.18 no.1
    • /
    • pp.18-21
    • /
    • 2001
  • In this study, we assessed the efficacy of a novel B. amyloliquefacience DS11 phytase (DS11 phytase) and that of a commercial Aspergillus ficcum phytase (AF phytase) through their bioavailabilities of phytin-posphorus and -calcium in the diet using cannulated pigs. For the purpose of evaluating the efficacy of the phytases in pigs, we determined phosphorous concentrations from serum and feces, in addition to ingesta obtained from the cannula at the terminal ileum. As results, phosphorus concentration was lower in feces from DS11 group and BASF group by 17% and 10%, and higher in serum from the respective groups by 34% and 20%, as compared to the control group. Both phytases are evaluated to enhance phosphorus availability to the great extent. Calcium concentration of feces were lower in DS11 group and BASF group by 31% and 10%, than that in the control. Calcium concentration of serum was higher in DS11 phytase group by 4% but lower in AF phyase group by 3%, then that in the control group.

  • PDF

Screening of Phytase Overproducing Strains in Aspergillus spp. by UV Mutagenesis

  • Lee, Eung-Suek;Paik, In-Kee;Hahm, Young-Tae
    • Mycobiology
    • /
    • v.28 no.3
    • /
    • pp.119-122
    • /
    • 2000
  • Phytases (myo-inositol hexakisphosphate phosphohydrolase; EC 3.1.3.8) are enzymes which catalyze the hydrolisys of phytate into myo-inositol and inorganic phosphates. Phytases are found in plants and a variety of microorganisms. Aspergillus species were treated with 254 nm of UV irradiation for the screening of phytase overproducing mutant strains. At 15 minute irradiation, the survivals of population were less than 5%, and UV irradiation time was decided at 20 minute for the isolation of mutant strains. Four UV mutant strains in A. oryzae (YUV-47, -169, -341, -511) and six in A. ficuum (FUV-17, -36, -69, -193, -317, -419) were isolated on PSM media containing ammonium phosphate. The specific enzyme activities of A. ficuum mutants are 110 to 140% higher than that of wild type.

  • PDF

Purification and Characterization of a Novel Extracellular Alkaline Phytase from Aeromonas sp.

  • SEO MYUNG-JI;KIM JEONG-NYEO;CHO EUN-AH;PARK HOON;CHOI HAK-JONG;PYUN YU-RYANG
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.745-748
    • /
    • 2005
  • A phytase from Aeromonas sp. LIK 1-5 was partially purified by ammonium sulfate precipitation and DEAE-Sephacel column chromatography. Its molecular weight was 44 kDa according to SDS-PAGE gel. Enzyme activity was optimal at pH 7 and at $50^{\circ}C$. The purified enzyme was strongly inhibited by 2 mM EDTA, $Zn^{2+},\;Co^{2+},\;or\;Mn^{2+}$, and activated by 2 mM $Ca^{2+}$. The K_m value for sodium phytate was 0.23 mM, and the enzyme was resistant to trypsin. The N-terminal amino acid sequence of the phytase was similar to that of other known alkaline phytases. The phytase was specific for ATP and sodium phytate, which is different from other known alkaline phytases. Based on the substrate specificity, the phytase may therefore be a novel alkaline phytase.

Expression of the Aspergillus niger var. awamori Phytase Gene in Pichia pastoris, and Comparison of Biological Properties

  • CHOI, JAE-MUN;DOO-SANG KIM;MOON-SICK YANG;HYUNG-RAK KIM;JAE-HO KIM
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.6
    • /
    • pp.1066-1070
    • /
    • 2001
  • The PhyA gene, encoding myo-inositol hexakisphosphate phosphohydrolase in Aspergillus niger var. awamori (wild-type), was cloned and sequenced. The cDNA was overexpressed by a multicopy gene expression system in Pichia pastoris KM71. Recombinant, wild-type and commercial phytase from Aspergilus ficuum NRRL 3135 (Natuphos) were purified. The PhyA gene of Aspergillus niger var awamori showed perfect homology to the phytase of Aspergillus ficcum and $97\%$ homology to A. niger var awamori (L02421). Wild-type phytase was highly glycosylated and more thermostable than the other two, while deglycosylated farms of three phytases showed identical molecular weight, 507 kDa. After heating at $80^{\circ}C$, wild-type, commercial, and recombinant phytases retained $57\%, 32%,\;and\;8\%$ of their original activities, respectively. In conclusion, glycosylation plays a key role in the thermostability of phytase and its enzymatic characterization.

  • PDF

Evolution of E. coli Phytase for Increased Thermostability Guided by Rational Parameters

  • Li, Jiadi;Li, Xinli;Gai, Yuanming;Sun, Yumei;Zhang, Dawei
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.3
    • /
    • pp.419-428
    • /
    • 2019
  • Phytases are enzymes that can hydrolyze phytate and its salts into inositol and phosphoric acid, and have been utilized to increase the availability of nutrients in animal feed and mitigate environmental pollution. However, the enzymes' low thermostability has limited their application during the feed palletization process. In this study, a combination of B-value calculation and protein surface engineering was applied to rationally evolve the heat stability of Escherichia coli phytase. After systematic alignment and mining for homologs of the original phytase from the histidine acid phosphatase family, the two models 1DKL and 1DKQ were chosen and used to identify the B-values and spatial distribution of key amino acid residues. Consequently, thirteen potential amino acid mutation sites were obtained and categorized into six domains to construct mutant libraries. After five rounds of iterative mutation screening, the thermophilic phytase mutant P56214 was finally yielded. Compared with the wild-type, the residual enzyme activity of the mutant increased from 20% to 75% after incubation at $90^{\circ}C$ for 5 min. Compared with traditional methods, the rational engineering approach used in this study reduces the screening workload and provides a reference for future applications of phytases as green catalysts.