• Title/Summary/Keyword: Polar WRF

Search Result 5, Processing Time 0.018 seconds

A Numerical Simulation of Blizzard Caused by Polar Low at King Sejong Station, Antarctica (극 저기압(Polar Low) 통과에 의해 발생한 남극 세종기지 강풍 사례 모의 연구)

  • Kwon, Hataek;Park, Sang-Jong;Lee, Solji;Kim, Seong-Joong;Kim, Baek-Min
    • Atmosphere
    • /
    • v.26 no.2
    • /
    • pp.277-288
    • /
    • 2016
  • Polar lows are intense mesoscale cyclones that mainly occur over the sea in polar regions. Owing to their small spatial scale of a diameter less than 1000 km, simulating polar lows is a challenging task. At King Sejong station in West Antartica, polar lows are often observed. Despite the recent significant climatic changes observed over West Antarctica, adequate validation of regional simulations of extreme weather events such as polar lows are rare for this region. To address this gap, simulation results from a recent version of the Polar Weather Research and Forecasting model (Polar WRF) covering Antartic Peninsula at a high horizontal resolution of 3 km are validated against near-surface meteorological observations. We selected a case of high wind speed event on 7 January 2013 recorded at Automatic Meteorological Observation Station (AMOS) in King Sejong station, Antarctica. It is revealed by in situ observations, numerical weather prediction, and reanalysis fields that the synoptic and mesoscale environment of the strong wind event was due to the passage of a strong mesoscale polar low of center pressure 950 hPa. Verifying model results from 3 km grid resolution simulation against AMOS observation showed that high skill in simulating wind speed and surface pressure with a bias of $-1.1m\;s^{-1}$ and -1.2 hPa, respectively. Our evaluation suggests that the Polar WRF can be used as a useful dynamic downscaling tool for the simulation of Antartic weather systems and the near-surface meteorological instruments installed in King Sejong station can provide invaluable data for polar low studies over West Antartica.

A Numerical Simulation Study of Strong Wind Events at Jangbogo Station, Antarctica (남극 장보고기지 주변 강풍사례 모의 연구)

  • Kwon, Hataek;Kim, Shin-Woo;Lee, Solji;Park, Sang-Jong;Choi, Taejin;Jeong, Jee-Hoon;Kim, Seong-Joong;Kim, Baek-Min
    • Atmosphere
    • /
    • v.26 no.4
    • /
    • pp.617-633
    • /
    • 2016
  • Jangbogo station is located in Terra Nova Bay over the East Antarctica, which is often affected by individual storms moving along nearby storm tracks and a katabatic flow from the continental interior towards the coast. A numerical simulation for two strong wind events of maximum instantaneous wind speed ($41.17m\;s^{-1}$) and daily mean wind speed ($23.92m\;s^{-1}$) at Jangbogo station are conducted using the polar-optimized version of Weather Research and Forecasting model (Polar WRF). Verifying model results from 3 km grid resolution simulation against AWS observation at Jangbogo station, the case of maximum instantaneous wind speed is relatively simulated well with high skill in wind with a bias of $-3.3m\;s^{-1}$ and standard deviation of $5.4m\;s^{-1}$. The case of maximum daily mean wind speed showed comparatively lower accuracy for the simulation of wind speed with a bias of -7.0 m/s and standard deviation of $8.6m\;s^{-1}$. From the analysis, it is revealed that the each case has different origins for strong wind. The highest maximum instantaneous wind case is caused by the approach of the strong synoptic low pressure system moving toward Terra Nova Bay from North and the other daily wind maximum speed case is mainly caused by the katabatic flow from the interiors of Terra Nova Bay towards the coast. Our evaluation suggests that the Polar WRF can be used as a useful dynamic downscaling tool for the simulation and investigation of high wind events at Jangbogo station. However, additional efforts in utilizing the high resolution terrain is required to reduce the simulation error of high wind mainly caused by katabatic flow, which is received a lot of influence of the surrounding terrain.

Development of an Operational Storm Surge Prediction System for the Korean Coast

  • Park, Kwang-Soon;Lee, Jong-Chan;Jun, Ki-Cheon;Kim, Sang-Ik;Kwon, Jae-Il
    • Ocean and Polar Research
    • /
    • v.31 no.4
    • /
    • pp.369-377
    • /
    • 2009
  • Performance of the Korea Ocean Research and Development Institute (KORDI) operational storm surge prediction system for the Korean coast is presented here. Results for storm surge hindcasts and forecasts calculations were analyzed. The KORDI storm surge system consists of two important components. The first component is atmospheric models, based on US Army Corps of Engineers (CE) wind model and the Weather Research and Forecasting (WRF) model, and the second components is the KORDI-storm surge model (KORDI-S). The atmospheric inputs are calculated by the CE wind model for typhoon period and by the WRF model for non-typhoon period. The KORDI-S calculates the storm surges using the atmospheric inputs and has 3-step nesting grids with the smallest horizontal resolution of ${\sim}$300 m. The system runs twice daily for a 72-hour storm surge prediction. It successfully reproduced storm surge signals around the Korean Peninsula for a selection of four major typhoons, which recorded the maximum storm surge heights ranging from 104 to 212 cm. The operational capability of this system was tested for forecasts of Typhoon Nari in 2007 and a low-pressure event on August 27, 2009. This system responded correctly to the given typhoon information for Typhoon Nari. In particular, for the low-pressure event the system warned of storm surge occurrence approximately 68 hours ahead.

Revisit the Cause of the Cold Surge in Jeju Island Accompanied by Heavy Snow in January 2016 (2016년 1월 폭설을 동반한 제주도 한파의 원인 재고찰)

  • Han, Kwang-Hee;Ku, Ho-Young;Bae, Hyo-Jun;Kim, Baek-Min
    • Atmosphere
    • /
    • v.32 no.3
    • /
    • pp.207-221
    • /
    • 2022
  • In Jeju, on January 23, 2016, a cold surge accompanied by heavy snowfall with the most significant amount of 12 cm was the highest record in 32 years. During this period, the temperature of 850 hPa in January was the lowest in 2016. Notably, in 2016, the average surface temperature of January on the Polar cap was the highest since 1991, and 500 hPa geopotential height also showed the highest value. With this condition, the polar vortex in the northern hemisphere meandered and expanded into the subtropics regionally, covering the Korean Peninsula with very high potential vorticity up to 7 Potential Vorticity Unit. As a result, the strong cold advection, mostly driven by a northerly wind, around the Korean Peninsula occurred at over 2𝜎. Previous studies have not addressed this extreme synoptic condition linked to polar vortex expansion due to the unprecedented Arctic warming. We suggest that the occurrence of a strong Ural blocking event after the abrupt warming of the Barents/Karas seas is a major cause of unusually strong cold advection. With a specified mesoscale model simulation with SST (Sea Surface Temperature), we also show that the warmer SST condition near the Korean Peninsula contributed to the heavy snowfall event on Jeju Island.

Tropical Cyclone Track and Intensity Forecast Using Asymmetric 3-Dimensional Bogus Vortex (비축대칭 3차원 모조 소용돌이를 이용한 열대저기압의 진로 및 강도예측)

  • Lee, Jae-Deok;Cheong, Hyeong-Bin;Kang, Hyun-Gyu;Kwon, In-Hyuk
    • Atmosphere
    • /
    • v.24 no.2
    • /
    • pp.207-223
    • /
    • 2014
  • The bogussing method was further developed by incorporating the asymmetric component into the symmetric bogus tropical cyclone of the Structure Adjustable Balanced Vortex (SABV). The asymmetric component is separated from the disturbance field associated with the tropical cyclone by establishing local polar coordinates whose center is the location of the tropical cyclone. The relative importance of wave components in azimuthal direction was evaluated, and only two or three wave components with large amplitude are added to the symmetric components. Using the Weather Research and Forecast model (WRF), initialized with the asymmetric bogus vortex, the track and central pressure of tropical cyclones were predicted. Nine tropical cyclones, which passed over Korean peninsula during 2010~2012 were selected to assess the effect of asymmetric components. Compared to the symmetric bogus tropical cyclone, the track forecast error was reduced by about 18.9% and 17.4% for 48 hours and 72 hours forecast, while the central pressure error was not improved significantly. The results suggest that the inclusion of asymmetric component is necessary to improve the track forecast of tropical cyclones.