• 제목/요약/키워드: Potentiated hepatotoxicity

검색결과 9건 처리시간 0.022초

EFFECTS OF DICHLOROMETHANE ON CARBON TETRACHLORIDE HEPATOTOXICITY IN RATS

  • Kim, Dae B.;Kim, Baik H.
    • Toxicological Research
    • /
    • 제5권1호
    • /
    • pp.37-41
    • /
    • 1989
  • A non-hepatotoxic dose of dichloromethane (DCM) was examined for potential effects on the hepatotoxicity of carbon tetrachloride (CT) in adult male rats. A concomitant treatment of DCM (0.45ml/kg, po) significantly potentiated the hepatotoxicity of CT at varing doses (0.06 to 0.63 ml/kg, po) as determined by increase in SGOT and SGPT activities 24 hn following the treatments. The carboxyhemoglobin (COHb) saturation induced by DCM was significantly decreased by CT treatments. The potentiation of CT hepatotoxicity by DCM does not appear to be associated with increased metabolism of CT.

  • PDF

상승적 화학적 간독성에 미치는 YH439의 영향 (The Effects of Isopropyl 2-(1,3-dithioetane-2-ylidene)-2-[N-(4-methyl-thiazol-2-yl)carbamoyl]acetate (YH439) on Potentiated Carbon Tetrachloride Hepatotoxicity)

  • 김상건;조주연
    • 대한약리학회지
    • /
    • 제32권3호
    • /
    • pp.407-416
    • /
    • 1996
  • 간독성물질인 $CCl_4$의 대사에서 반응성이 높은 대사중간체의 증가가 P450 2E1의 활성 및 발현증가와 관련된다. YH439는 랫트에서 사염화탄소에 의하여 유발된 간 손상에 보호효과가 탁월하였고, 각종 독성물질에 의하여 발생하는 간염을 억제하며 P450 2E1의 발현을 억제하는 것으로 나타났다. P450 2E1의 발현억제가 YH439의 간장보호작용의 일부기전으로 해석되나 free radical 공격의 제어, 방어과정에 관련된 탐식세포의 역할등 간장독성에 관련된 YH439의 영향 및 관련된 기초연구는 완전히 확립되어 있지 않다. 본 연구에서는 상승적인 화학적 독성에 대한 YH439의 보호효과를 관찰하였다. Retinoyl palmiate (Vit-A)를 전처러하고 YH439를 처리한 rat의 경우 $CCl_4$ 단독투여군에 비하여 혈장 alanine aminotransferase (ALT)활성이 5배로 증가하여 $CCl_4$에 의한 간독성을 현저히 강화시켰으나, YH439와 Vit-A를 동시에 전처리한 rats에 있어서는 Vit-A에 의하여 강화된 독성이 94% 감소하였다. Vit-A에 의한 혈장 ALT 활성 증가는 Kupffer cell 활성을 선택적으로 억제하는 $GdCl_3$의 투여에 의해 완전히 차단되어 YH439가 Kupffer cell 활성억제를 매개로 상승적 간손상에 대하여 보호효과가 있음을 지지한다. Propyl sulfide의 전처치는 $CCl_4$에 의해 유도되는 간독성을 $CCl_4$ 단독투여와 비교했을때 5배 이상 증가시켰으나, Propyl sulfide와 YH439를 병용투여할 경우 propyl sulfide에 의해 강화되는 간독성이 YH439의 투여용량에 의존적으로 감소하였고, propyl sufide와 $CCl_4$에 의한 지질과산화의 증가가 YH439에 의하여 용량의존적으로 억제되는 것으로 나타났다. Propyl sulfide에 의하여 강화된 간독성의 차단은 YH439가 P450 2E1 발현조절을 통하여 간독성을 제어함을 지지한다. 그러나 YH439는 pyridine과 $CCl_4$에 의한 독성을 억제시키지 못하였다. 이는 Pyridine에 의해 유도되는 다른 형의 P450발현이 YH439에 의해 억제되지 못하는 이유로 해석된다. 중금속에 의해 유도되는 간독성에 대한 YH439의 보호효과를 ICR mice에서 관찰하였을 때 $CdCl_2$를 1회 투여할때 ALT와 aspartate aminotransferase (AST)활성이 $5{\sim}6$배 증가하였으나 YH439를 투여한 후 $CdC1_2$를 투여한 동물에 있어서는 투여후 6시간에 AST의 증가가 유의성 있게 억제되었다. 그러나 YH439는 thioacetamide에 의하여 유발된 liver fibrosis에는 개선효과가 없는 것으로 나타났다. 이러한 결과는 YH439가 Kupffer cell 불활성화를 통하여 Vit-A에 의해 유도되는 간독성을 효과적으로 방어하고, YH439에 의한 P450 2E1의 발현억제는 propyl sulfide를 경유하는 간독성 차단과 관계되며, YH439는 중금속으로 유도된 조직독성에 방어효과가 있음을 지지한다.

  • PDF

비타민 A 및 피리딘으로 유발된 사염화탄소 유발성 간독성에 대한 2-(알릴티오)피라진의 보호효과: ${\Phi}$x-174 DNA 손상에 미치는 효과 (Protective Effects of 2-(Allylthio)pyrazine on Retinoyl Palmitate- and Pyridine-Potentiated Carbon tetrachloride- induced Hepatotoxicity: Effect on ${\Phi}x$-174 DNA Strand Breakage)

  • 김상건;조주연;최성희;김낙두
    • 약학회지
    • /
    • 제40권6호
    • /
    • pp.727-733
    • /
    • 1996
  • 2-(Allylthio)pyrazine is effective in selectively suppressing constitutive and inducible expression of cytochrome P450 2E1. The effect of 2-(allylthio)pyrazine against potentiat ed chemical injury was studied in rats. Vitamin-A pretreatment of rats substantially increased carbon tetrachloride hepatotoxicity, as supported by an ~4-fold increase in serum alanine aminotransferase (ALT) activity. Concomitant pretreatment of rats with 2-(allylthio)pyrazine at the daily dose of 200mg/kg resulted in a 76% decrease in vitamin-A-potentiated hepatotoxicity, which supported the possibility that 2-(allylthio)pyrazine protects the liver against chemical-induced hepatic injury by the mechanism associated with Kupffer cell inactivation. Pyridine pretreatment caused substantial enhancement in carbon tetrachloride hepatotoxicity. 2-(Allylthio)pyrazine treatment of rats reduced the pyridine-potentiated toxicity in a dose-dependent manner. Animals treated with both pyridine and 2-(allylthio)pyrazine prior to intoxicating dose of CCl$_4$ resulted in 85% and 47% decreases in pyridine-increased triglycerides and cholesterol levels in the liver. The protective effect of 2-(allylthio)pyrazine on the DNA strand breakage induced by benzenetriol was assessed by measuring the conversion of supercoiled ${\Phi}x$-174 DNA to the open relaxed form. 2-(Allylthio)pyrazine blocked the benzenetriol-induced conversion of supercoiled DNA to open circular form in a dose-dependent manner. The presence of 2-(allylthio)pyrazine at the doses from I to 10mM in the incubation mixture containing 5 ${\mu}$M benzenetriol completely protected benzenetriol-induced DNA strand breakage with the EC50 for the 2-(allylthio)pyrazine blocking being noted as ~220 ${\mu}$M, whereas allyl disulfide exerted protecting effect at relatively high concentrations (i.e. ~850 ${\mu}$M), suggesting that 2-(allylthio)pyrazine effectively scavenges the reactive oxygen species. These results provide evidence that 2-(allylthio)pyrazine blocks vitamin A- or pyridine-potentiated CCl$_4$ hepatotoxicity and that the agent is active in protecting DNA by scavenging the reactive oxygen species.

  • PDF

Pretreatment with 1,8-Cineole Potentiates Thioacetamide-Induced Hepatotoxicity and Immunosuppression

  • Kim, Nam-Hee;Hyun, Sun-Hee;Jin, Chun-Hua;Lee, Sang-Kyu;Lee, Dong-Wook;Jeon, Tae-Won;Lee, Jae-Sung;Chun, Young-Jin;Lee, Eung-Seok;Jeong, Tae-Cheon
    • Archives of Pharmacal Research
    • /
    • 제27권7호
    • /
    • pp.781-789
    • /
    • 2004
  • The effect of 1,8-cineole on cytochrome P450 (CYP) expression was investigated in male Sprague Dawley rats and female BALB/c mice. When rats were treated orally with 200, 400 and 800 mg/kg of 1,8-cineole for 3 consecutive days, the liver microsomal activities of benzy-loxyresorufin- and pentoxyresorufin-D-dealkylases and erythromycin N-demethylase were dose-dependently induced. The Western immunoblotting analyses clearly indicated the induction of CYP 2B1/2 and CYP 3A1/2 proteins by 1,8-cineole. At the doses employed, 1,8-cineole did not cause toxicity, including hepatotoxicity. Subsequently, 1,8-cineole was applied to study the role of metabolic activation in thioacetamide-induced hepatotoxicity and/or immunotoxicity in animal models. To investigate a possible role of metabolic activation by CYP enzymes in thioacetamide-induced hepatotoxicity, rats were pre-treated with 800 mg/kg of 1,8-cineole for 3 days, followed by a single intraperitoneal treatment with 50 and 100 mg/kg of thioacetamide in saline. 24 h later, thioacetamide-induced hepatotoxicity was significantly potentiated by the pretreatment with 1,8-cineole. When female BALB/c mice were pretreated with 800 mg/kg of 1,8-cineole for 3 days, followed by a single intraperitoneal treatment with 100 mg/kg of thioace-tamide, the antibody response to sheep red blood cells was significantly potentiated. In addition, the liver microsomal activities of CYP 2B enzymes were significantly induced by 1,8-cineole as in rats. Taken together, our results indicated that 1,8-cineole might be a useful CYP modulator in investigating the possible role of metabolic activation in chemical-induced hepato-toxicity and immunotoxicity.

웅성 랫트에서 이염화메탄의 사염화 탄소 독성 증폭효과

  • 김대병;김영철
    • Toxicological Research
    • /
    • 제9권2호
    • /
    • pp.253-262
    • /
    • 1993
  • The effects of dichloromethane (DCM) on carbon tetrachloride (CT) toxicity were examined in adult male rats. A concomitant treatment of rats with DCM (0.3, 0.6, 1.2 g/kg, po) significantly potentiated the hepatotoxicity of CT (1.0 g/kg, po) as determined by increase in serum GPT (glutamic pyruvic transaminase), GOT (glutamic oxaloacetic transaminase), and SDH (sorbitol dehydrogenase) activity 24 hr following the treatments. Serum LDH (lactate dehydrogenase) activity was increased by either DCM or CT treatment.

  • PDF

백서의 반복적인 육체운동에 의한 사염화탄소 간독성의 증폭효과 (Potentiation of Carbon Tetrachloride Hepatotoxicity induced by Repeated Physical Exercise in adult Female rats)

  • 김수년;김영철
    • Toxicological Research
    • /
    • 제8권2호
    • /
    • pp.265-272
    • /
    • 1992
  • Effects of repeated physical exercise on the carbon tetrachloride ($CCl_4$) hepatotoxicity were examined in adult female rats. Rats were introduced into a cylindrical rotating cage and forced to exercise for 1 hr each day, 6days/week, for 5 consecutive weeks at a speed starting from 10m/min, increased by 1m/min per day until the speed reached 27m/min. Significantly less body weight gain was observed in the exercise group suggesting that physical fitness had been induced in these animals. Eighteen hours following termination of the last exercise bout rats were treated with $CCl_4$(2 mmol/kg.ip). The $CCl_4$-induced heptotoxicity was significantly potentiated in the repeated exercise group compared to the resting sedentary animals as determined by changes in serum sorbitol dehydrogenase (SDH), glutamic oxaloacetic transaminase(GOT), glutamic pyruvic transaminase (GPT), and glucose-6-phosphatase(G-6-Pase) activities when measured 24hrs following the $CCl_4$ treatment. Hepatic drug metabolizing activity was determined in order to elucidate the underlying mechanism of potentiating action of the $CCl_4$ hepatotoxicity induced by repeated physical exercise. Repeated exercise increased the hepatic microsomal cytochrome P-450 contents and aminopyrine N-demethylase activity. The results suggest that the potentiation of $CCl_4$ hepatotoxicity by repeated exercise is associated with induction of the mixed function oxidase (MFO) enzyme system mediating the metabolism of $CCl_4$ to its active metabolite(s).

  • PDF

Guinea pig에서 alcohol과 paraquat에 의한 간독성에 미치는 selenium의 방어 효과 (Protective effects of selenium on alcohol and/or paraquat-induced hepatotoxicity in guinea pigs)

  • 박상철;강형섭;이호일;김진상
    • 대한수의학회지
    • /
    • 제36권2호
    • /
    • pp.313-325
    • /
    • 1996
  • Experiments were undertaken to examine the ability of selenium to protect against alcohol and/or paraquat-induced hepatotoxicity and to examine the additive effect between alcohol and paraquat. Protective effect against hepatotoxic functions was measured in serum from alcohol(15% v/v), paraquat(200ppm), alcohol and paraquat, and combination of sodium selenite(4ppm) in drinking water-fed guinea pigs ad libitum for 4 weeks. A total of 68 healthy 7-weeks-old male animals were assigned at random to 8 treatment groups(9~13 animals/group). Body and liver weight losses, and high serum concentrations in aspartate aminotransferase(AST), alanine aminotransferase(ALT, in only paraquat group), $\gamma$-glutamyltranspeptidase($\gamma$-GTP), cholesterol(Cho), creatinine, blood urea nitrogen(BUN), total bilirubin(TB), direct bilirubin(DB), total protein(TP), albumin and globulin as well as low values in alkaline phosphatase(ALP) and glucose were produced in a groups of alcohol or paraquat-fed. These values were not potentiated in a group given the combination of alcohol plus paraquat. Morphological changes in the liver were also observed in the alcohol or paraquat-fed group. Lipid droplet and cell swelling in the hepatocytes were observed in alcohol-fed guinea pig, especially Mallory's hyaline arounded hepatic vein. In the paraquat-fed guinea pig, lipid droplet, pyknosis and karyolysis were observed. When alcohol or paraquat was combined with selenium-fed, hyperplasia of Kupffer cell in liver were observed. However, the mean ALT, $\gamma$-GTP, Cho, BUN, TB, TP, albumin and globulin values were lower in groups given the combination of alcohol and/or paraquat plus selenium, compared with groups given alcohol and/or paraquat. Also, the ratio of liver weight to body weight and ALP values(exception of paraquat plus selenium group) were increased by selenium. These results suggest that an adequate selenium confers marked protection against alcohol and paraquat-induced hepatotoxicity.

  • PDF

Ethanol이 Allyl alcohol 독성에 미치는 영향 (Effect of Ethanol on Allyl alcohol-Induced Toxicity)

  • 이주영;김대병;문창규;정진호
    • 약학회지
    • /
    • 제38권2호
    • /
    • pp.107-113
    • /
    • 1994
  • Ally alcohol is metabolized in the liver through two steps, first to reactive acrolein by alcohol dehydrogenase(ADH), subsequently to acrylic acid by aldehyde dehydrogenase(ALDH). Since ethanol could compete the same enzymes to be metabolized in the liver, we have studied the interaction between allyl alcohol and ethanol on liver toxicity. Simultaneous treatment of 2 g/kg ethanol by ip administration with 40 mg/kg allyl alcohol to rats increased the lethality significantly, accompanied by potentiation of the loss of hepatic glutathione. Collectively, these findings suggested that ethanol potentiated the hepatotoxicity and lethality induced by allyl alcohol probably through competing two metabolizing enzymes, ADH and ALDH.

  • PDF

Differential Alterations of Endotoxin-induced Cytokine Expression and Mitogen-activated Protein Kinase Activation by Mercury in Mouse Kidney

  • Kim, Sang-Hyun;Kim, Dae-Keun;Shin, Tae-Yong;Choi, Cheol-Hee
    • Toxicological Research
    • /
    • 제20권3호
    • /
    • pp.233-239
    • /
    • 2004
  • The present study was designed to determine the impact of mercury on endotoxin-induced inflammatory cytokine expression and corresponding signal transduction in mouse kidney. Male BALB/c mice were exposed continuously to 0, 0.3, 1.5, 7.5, or 37.5 ppm of mercury in drink-ing water for 14 days and at the end of the treatment period, lipopolysaccharide (LPS, 0.5 mg/kg) was injected intraperitoneally 2 h prior to euthanasia. The doses of mercury and LPS did not cause hepatotoxicity or renal toxicity as indicated by unaltered plasma alanine aminotransferase and aspartate aminotransferase levels, and terminal UTP nucleotide end-labeling assay from kidney, respectively. Mercury decreased kidney glutathione (GSH) and with LPS, it additively decreased GSH. Mercury activated p38 mitogen-activated protein kinase (MAPK) and additively increased LPS-induced p38 MAPK phosphorylation. In contrast, mercury inhibited LPS-induced activation of extra-cellular signal-regulated kinase (ERK) but had no effect alone. Mercury increased the gene expression of tumor necrosis factor $\alpha$ (TN F$\alpha$) and potentiated LPS-induced TNF$\alpha$ expression. Mercury did not affect LPS-induced interleukin-1$\beta$ (IL-1$\beta$) expression but decreased LPS-induced IL-6 expression. These results suggest that low levels of mercury might augment LPS-induced TNF$\alpha$ expression by altering GSH and p38 MAPK. Mercury modulates LPS-induced p38 and ERK activation, and downstream TNF$\alpha$ and IL-6 expression in kidney, respectively.