• Title/Summary/Keyword: Pre-slaughter Transport

Search Result 7, Processing Time 0.027 seconds

Dietary supplementation of Eucommia leaf extract to growing-finishing pigs alters muscle metabolism and improves meat quality

  • Zhenglei Shen;Chuxin Liu;Chuangye Deng;Qiuping Guo;Fengna Li;Qingwu W. Shen
    • Animal Bioscience
    • /
    • v.37 no.4
    • /
    • pp.697-708
    • /
    • 2024
  • Objective: The objective of this study was to investigate the influence of dietary supplementation of Eucommia ulmoides leaf extract (ELE) on muscle metabolism and meat quality of pigs with and without pre-slaughter transportation. Methods: In a 43-day feeding experiment, a total of 160 pigs with an initial body weight 60.00±2.00 kg were randomly assigned into four groups in a completely randomized design with 10 replicates. Pigs in groups A and C were fed a basal diet and pigs in groups B and D were fed a basal diet supplemented with 0.5% ELE. Pigs were slaughtered with (group B and D) or without (group A and C) pre-slaughter transport. Muscle chemical composition, postmortem glycolysis, meat quality and muscle metabolome were analyzed. Results: Dietary ELE supplementation had no effect on the proximate composition of porcine muscle, but increased free phenylalanine, proline, citruline, norvaline, and the total free amino acids in muscle. In addition, dietary ELE increased decanoic acid and eicosapentaenoic acid, but decreased heptadecanoic acid, oleic acid, trans-oleic acid, and monounsaturated fatty acids in muscle. Meat quality measurement demonstrated that ELE improved meat water holding capacity and eliminated the negative effects of pre-slaughter transport on meat cooking yield and tenderness. Dietary ELE reduced muscle glycolytic potential, inhibited glycolysis and muscle pH decline in the postmortem conversion of muscle to meat and increased the activity of citrate synthase in muscle. Metabolomics analysis by liquid chromatographic tandem mass spectrometric showed that ELE enhanced muscle energy level, regulated AMP-activated protein kinase (AMPK) signaling, modulated glycogenolysis/glycolysis, and altered the metabolism of carbohydrate, fatty acids, ketone bodies, amino acids, purine, and pyrimidine. Conclusion: Dietary ELE improved meat quality and alleviated the negative effect of pre-slaughter transport on meat quality by enhancing muscle oxidative metabolism capacity and inhibiting glycolysis in postmortem muscle, which is probably involved its regulation of AMPK.

A Review: Influences of Pre-slaughter Stress on Poultry Meat Quality

  • Ali, Md. Shawkat;Kang, Geun-Ho;Joo, Seon Tea
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.6
    • /
    • pp.912-916
    • /
    • 2008
  • Pre-slaughter conditions affect poultry meat quality. Therefore, stresses before slaughter like heat stress, struggle and shackling on the shackle line, crating and transport and feed withdrawal are very important for the poultry industry in respect of quality as well as welfare of the birds. However, exposure to heat in oxidative stress can in turn lead to cytotoxicity in meat type birds. Chickens exposed to heat stress before slaughter showed the lowest ultimate pH and birds shackled for a longer time the highest. The abdominal fat content was higher in heat stressed birds. Struggling on the shackle line hastened the initial rate of the pH drop and increased the redness of breast meat. Again, with increasing struggling activity, lactate concentration in breast muscle of chicken increased. Paler meat was found in birds that were transported for a longer time than in those after a small journey or not transported. The pre-slaughter and eviscerated weights were decreased as the length of feed withdrawal period increased.

Effect of Transportation at High Ambient Temperatures on Physiological Responses, Carcass and Meat Quality Characteristics in Two Age Groups of Omani Sheep

  • Kadim, I.T.;Mahgoub, O.;AlKindi, A.Y.;Al-Marzooqi, W.;Al-Saqri, N.M.;Almaney, M.;Mahmoud, I.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.3
    • /
    • pp.424-431
    • /
    • 2007
  • The aim of this study was to determine the effects of short road transportation in an open truck during hot season on live weight shrink, physiological responses, and carcass and meat quality of Omani sheep at 6 and 12 months of age. Thirty-six male sheep, 18 of each age group, were used. Age groups were assigned randomly to transported and not-transported groups. The transported group was transported to the slaughterhouse the day of slaughter in an open truck covering a distance of approximately 100 km. The average temperature during transportation was $37^{\circ}C$. The not-transported group was kept in a lairage of a commercial slaughterhouse with ad libitum feed and water for 48 h prior to slaughter. Blood samples were collected from sheep before loading and prior to slaughter via jugular venipuncture to assess their physiological response to transport in relation to hormonal levels. Animals were weighed just before loading onto a truck and after transport to assess shrinkage. Muscle ultimate pH, expressed juice, cooking loss percentage, WB-shear force value, sarcomere length and colour L*, a*, b* were measured on samples from longissimus dorsi, biceps femoris and semitendinosus muscles collected at 24 h postmortem at $1-3^{\circ}C$. Live weight shrinkage losses were 1.09 and 1.52 kg for 6 and 12 month transported sheep, respectively. The transported sheep had significantly (p<0.05) higher cortisol, adrenaline, noradrenaline, and dopamine concentration levels prior to slaughter at both ages than the not-transported sheep. Transportation significantly influenced meat quality characteristics of three muscles. Muscle ultimate pH and shear force values were significantly higher, while CIE L*, a*, b*, expressed juice and cooking loss were lower in transported than not-transported sheep. Age had a significant effect on meat quality characteristics of Omani sheep. These results indicated that short-term pre-slaughter transport at high ambient temperatures can cause noticeable changes in physiological and muscle metabolism responses in sheep.

Effect of loading density and weather conditions on animal welfare and meat quality of slaughter pigs

  • Jaewoo An;Yongju Kim;Minho Song;Jungseok Choi;Won Yun;Hanjin Oh;Seyeon Chang;Youngbin Go;Dongcheol Song;Hyunah Cho;Sanghun Park;Yuna Kim;Yunhwan Park;Gyutae Park;Sehyuk Oh;Jinho Cho
    • Journal of Animal Science and Technology
    • /
    • v.65 no.6
    • /
    • pp.1323-1340
    • /
    • 2023
  • There are several factors that affect the welfare and meat quality of pigs during pre-slaughter transport. Among various factors, the effects of weather conditions and loading density were studied. A total of 3,726 finishing pigs were allotted to one of nine groups arranged in a 3 × 3 factorial design according to the weather conditions (low temperature [LT], under 10℃; normal temperature [NT], 10℃-24℃; high temperature [HT], upper 24℃), and loading density (low density [LD], upper 0.43 m2/100 kg; normal density [ND], 0.37-0.43 m2/100 kg; high density [HD], under 0.37 m2/100 kg). Each treatment group follow as: LTLD, LTND, LTHD, NTLD, NTND, NTHD, HTLD, HTND, HTHD. In terms of carcass composition, pigs had the highest carcass weight and backfat thickness at LT. Comparing the HD transport to the ND transport, the meat quality indicated a lower pH and more drip loss. The incidence rate of pale, soft, exudative (PSE) pork was high in the order of the HD, LD, and the ND transport (20%, 9%, and 2%, respectively). The HT transport showed the lowest pH and greatest L* value under the given weather conditions. Pigs transported under the HTHD and LTLD conditions had the greatest rates of PSE pork (40% and 20%, respectively). Pigs exposed to HD transport had the shortest laying time and the highest overplap behavior. The LDLT transport pigs had a shorter laying time than the LDNT and LDHT transport pigs. In conclusion, too high or too low density transport is generally not excellent for meat quality or animal welfare, however it is preferable to transport at a slightly low density at high temperature and at a slightly high density at low temperature.

Effects of different stocking density in lairage of fattening pigs in high temperatures

  • Dongcheol Song;Seyeon Chang;Jaewoo An;Sehyun Park;Kyeongho Jeon;Hyuck Kim;Jinho Cho
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.4
    • /
    • pp.861-867
    • /
    • 2023
  • Lairages serve several functions, such as providing post-mortal inspections and providing a reservoir of animals to ensure the slaughter line runs efficiently. High stress lairage conditions can contribute to the accumulation of transport stress in pigs, causing poor pork quality and still stressed pigs at slaughter. The objective of this study was to investigate meat quality, blood profile and behavior changes according to lairage stocking density in in high temperature. Density treatments were as follows: LD, low density (lower than 0.5 m2/100 kg); ND, normal density (0.5 m2/100 kg to 0.83 m2/100 kg); HD, high density (higher than 0.83 m2/100 kg). Air temperature treatment was as follows: HT, high temperature (higher than 24℃). Pigs stocked with LD showed lower pH, WHC (water holding capacity), and higher DL (drip loss) and CL (cooking loss) than those stocked with HD. Pigs stocked with LD showed lower cortisol level than those stocked with HD. Therefore, Pigs exposed to high stock density (lower than 0.5 m2/100 kg) in high air temperature during pre-slaughter caused acute stress and lead to PSE (pale, soft, exudative) pork incidence. Based on obtained results, stocking of too high (lower than 0.5 m2/100 kg) density is generally not good for meat quality and animal welfare at high temperatures.

BEEF MEAT TRACEABILITY. CAN NIRS COULD HELP\ulcorner

  • Cozzolino, D.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1246-1246
    • /
    • 2001
  • The quality of meat is highly variable in many properties. This variability originates from both animal production and meat processing. At the pre-slaughter stage, animal factors such as breed, sex, age contribute to this variability. Environmental factors include feeding, rearing, transport and conditions just before slaughter (Hildrum et al., 1995). Meat can be presented in a variety of forms, each offering different opportunities for adulteration and contamination. This has imposed great pressure on the food manufacturing industry to guarantee the safety of meat. Tissue and muscle speciation of flesh foods, as well as speciation of animal derived by-products fed to all classes of domestic animals, are now perhaps the most important uncertainty which the food industry must resolve to allay consumer concern. Recently, there is a demand for rapid and low cost methods of direct quality measurements in both food and food ingredients (including high performance liquid chromatography (HPLC), thin layer chromatography (TLC), enzymatic and inmunological tests (e.g. ELISA test) and physical tests) to establish their authenticity and hence guarantee the quality of products manufactured for consumers (Holland et al., 1998). The use of Near Infrared Reflectance Spectroscopy (NIRS) for the rapid, precise and non-destructive analysis of a wide range of organic materials has been comprehensively documented (Osborne et at., 1993). Most of the established methods have involved the development of NIRS calibrations for the quantitative prediction of composition in meat (Ben-Gera and Norris, 1968; Lanza, 1983; Clark and Short, 1994). This was a rational strategy to pursue during the initial stages of its application, given the type of equipment available, the state of development of the emerging discipline of chemometrics and the overwhelming commercial interest in solving such problems (Downey, 1994). One of the advantages of NIRS technology is not only to assess chemical structures through the analysis of the molecular bonds in the near infrared spectrum, but also to build an optical model characteristic of the sample which behaves like the “finger print” of the sample. This opens the possibility of using spectra to determine complex attributes of organic structures, which are related to molecular chromophores, organoleptic scores and sensory characteristics (Hildrum et al., 1994, 1995; Park et al., 1998). In addition, the application of statistical packages like principal component or discriminant analysis provides the possibility to understand the optical properties of the sample and make a classification without the chemical information. The objectives of this present work were: (1) to examine two methods of sample presentation to the instrument (intact and minced) and (2) to explore the use of principal component analysis (PCA) and Soft Independent Modelling of class Analogy (SIMCA) to classify muscles by quality attributes. Seventy-eight (n: 78) beef muscles (m. longissimus dorsi) from Hereford breed of cattle were used. The samples were scanned in a NIRS monochromator instrument (NIR Systems 6500, Silver Spring, MD, USA) in reflectance mode (log 1/R). Both intact and minced presentation to the instrument were explored. Qualitative analysis of optical information through PCA and SIMCA analysis showed differences in muscles resulting from two different feeding systems.

  • PDF

In-transit development of color abnormalities in turkey breast meat during winter season

  • Carvalho, Rafael H.;Honorato, Danielle C.B.;Guarnieri, Paulo D.;Soares, Adriana L.;Pedrao, Mayka R.;Oba, Alexandre;Paiao, Fernanda G.;Ida, Elza I.;Shimokomaki, Massami
    • Journal of Animal Science and Technology
    • /
    • v.60 no.1
    • /
    • pp.30.1-30.10
    • /
    • 2018
  • Background: The poultry industry suffers losses from problems as pale, soft and exudative (PSE), and dark, firm and dry (DFD) meat can develop in meat as a result of short- and long-term stress, respectively. These abnormalities are impacted by pre-slaughter animal welfare. Methods: This work evaluated the effects of open vehicle container microclimate, throughout the $38{\pm}10km$ journey from the farm to the slaughterhouse, on commercially turkey transported during the Brazilian winter season. The journey was initiated immediately after water bath in truck fitted with portable Kestrel anemometers to measure air ventilation, relative humidity, temperature and ventilation. Results: The inferior compartments of the middle and rear truck regions showed highest temperature and relative humidity, and lower air ventilation. In addition, the superior compartments of the front truck regions presented lower temperature and wind chill, and highest air ventilation. The breast meat samples from animals located at the inferior compartments of the middle and rear truck regions and subjected to with water bath (WiB) treatment presented highest DFD-like and had lowest PSE-like meat incidence than those from animals located at other compartments within the container. Lower incidence of PSE-like meat was observed in birds without water bath (WoB). Conclusions: Assessment on turkeys transported under Brazilian southern winter conditions revealed that breast meat quality can be affected by relative humidity, air ventilation, temperature, and transport under subtropical conditions promoting color abnormalities and the formation of simultaneously PSE-like and DFD-like meat.