• Title/Summary/Keyword: Prediction Equation

Search Result 1,880, Processing Time 0.028 seconds

Determination of Carbon Equivalent Equation by Using Neural Network for Roll Force Prediction in hot Strip Mill (신경망을 이용한 열간 압연하중 예측용 탄소당량식의 개발)

  • 김필호;문영훈;이준정
    • Transactions of Materials Processing
    • /
    • v.6 no.6
    • /
    • pp.482-488
    • /
    • 1997
  • New carbon equivalent equation for the better prediction for the better prediction of roll force in a continuous hot strip mill has been formulated by applying a neural network method. In predicting roll force of steel strip, carbon equivalent equation which normalize the effects of various alloying elements by a carbon equivalent content is very critical for the accurate prediction of roll force. To overcome the complex relationships between alloying elements and operational variables such as temperature, strain, strain rate and so forth, a neural network method which is effective for multi-variable analysis was adopted in the present work as a tool to determine a proper carbon equivalent equation. The application of newly formulated carbon equivalent equation has increased prediction accuracy of roll force significantly and the effectiveness of neural network method is well confirmed in this study.

  • PDF

Modification of Creep-Prediction Equation of Concrete utilizing Short-term Creep Test (단기 크리프 시험 결과를 이용한 콘크리트의 크리프 예측시의 수정)

  • 송영철;송하원;변근주
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.4
    • /
    • pp.69-78
    • /
    • 2000
  • Creep of concrete is the most dominating factor affecting time-dependent deformations of concrete structures. Especially, creep deformation for design and construction in prestressed concrete structures should be predicted accurately because of its close relation with the loss in prestree of prestressed concrete structures. Existing creep-prediction models for special applications contain several impractical factors such as the lack ok accuracy, the requirement of long-term test and the lack of versatility for change in material properties, ets., which should be improved. In order to improve those drawbacks, a methodology to modify the creep-prediction equation specified in current Korean concrete structures design standard (KCI-99), which underestimates creep of concrete and does not consider change of condition in mixture design, is proposed. In this study, short-term creep tests were carried out for early-age concrete within 28 days after loading and their test results on influencing factors in the equation are analysed. Then, the prediction equation was modified by using the early-age creep test results. The modified prediction equation was verified by comparing their results with results obtained from long-term creep test.

Prediction of Carcass Composition Using Carcass Grading Traits in Hanwoo Steers

  • Lee, Jooyoung;Won, Seunggun;Lee, Jeongkoo;Kim, Jongbok
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.9
    • /
    • pp.1215-1221
    • /
    • 2016
  • The prediction of carcass composition in Hanwoo steers is very important for value-based marketing, and the improvement of prediction accuracy and precision can be achieved through the analyses of independent variables using a prediction equation with a sufficient dataset. The present study was conducted to develop a prediction equation for Hanwoo carcass composition for which data was collected from 7,907 Hanwoo steers raised at a private farm in Gangwon Province, South Korea, and slaughtered in the period between January 2009 and September 2014. Carcass traits such as carcass weight (CWT), back fat thickness (BFT), eye-muscle area (EMA), and marbling score (MAR) were used as independent variables for the development of a prediction equation for carcass composition, such as retail cut weight and percentage (RC, and %RC, respectively), trimmed fat weight and percentage (FAT, and %FAT, respectively), and separated bone weight and percentage (BONE, and %BONE), and its feasibility for practical use was evaluated using the estimated retail yield percentage (ELP) currently used in Korea. The equations were functions of all the variables, and the significance was estimated via stepwise regression analyses. Further, the model equations were verified by means of the residual standard deviation and the coefficient of determination ($R^2$) between the predicted and observed values. As the results of stepwise analyses, CWT was the most important single variable in the equation for RC and FAT, and BFT was the most important variable for the equation of %RC and %FAT. The precision and accuracy of three variable equation consisting CWT, BFT, and EMA were very similar to those of four variable equation that included all for independent variables (CWT, BFT, EMA, and MAR) in RC and FAT, while the three variable equations provided a more accurate prediction for %RC. Consequently, the three-variable equation might be more appropriate for practical use than the four-variable equation based on its easy and cost-effective measurement. However, a relatively high average difference for the ELP in absolute value implies a revision of the official equation may be required, although the current official equation for predicting RC with three variables is still valid.

A Study on the Improvement of Bearing Capacity Prediction Equation for Auger-drilled Piling (매입말뚝공법의 지지력 예측식 개선에 관한 연구)

  • 최도웅;한병권;서영화;조성한
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.382-389
    • /
    • 2002
  • Recently, auger-drilled piling has been widely used in urban area to reduce the air pollution and noise. But this construction method that its basic theory was introduced from Japan may be changed depending on the each piling company and construction field condition. Therefore, the design code and management method for auger-drilled piling is not defined yet. Especially, the lack of research on the bearing capacity of auger-drilled piling leads to the absence of rational bearing capacity prediction equation. This paper presents the optimum design code and economical construction method of the auger-drilled piling by proposing the new bearing capacity prediction equation based on the site specific soil types and construction conditions. In this paper, existing bearing capacity prediction equations and current pile load tests were compared. And the end bearing capacity and skin friction characteristics were also analyzed by comparing the results of CAPWAP. From the results of analysis, a reliable bearing capacity prediction equation considered soil types is proposed.

  • PDF

Prediction Equation of Spectral Acceleration Responses in Low-to-Moderate Seismic Regions using Domestic and Overseas Earthquake Records (국내·외 계기지진 정보를 활용한 중·약진 지역의 스펙트럴 가속도 응답 예측식)

  • Shin, Dong Hyeon;Kim, Hyung Joon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.77-86
    • /
    • 2018
  • This study develops an empirical prediction equation of spectral acceleration responses of earthquakes which can induce structural damages. Ground motion records representing hazards of low-to-moderate seismic regions were selected and organized with several influential factors affecting the response spectra. The empirical equation and estimator coefficients for acceleration response spectra were then proposed using a robust nonlinear optimization coupled with a regression analysis. For analytical verification of the prediction equation, response spectra used for low-to-moderate seismic regions were estimated and the predicted results were comparatively evaluated with measured response spectra. As a result, the predicted shapes of response spectra can simulate the graphical shapes of measured data with high accuracy and most of predicted results are distributed inside range of correlation of variation (COV) of 30% from perfectly correlated lines.

A Domain Combination Based Probabilistic Framework for Protein-Protein Interaction Prediction (도메인 조합 기반 단백질-단백질 상호작용 확률 예측기법)

  • Han, Dong-Soo;Seo, Jung-Min;Kim, Hong-Soog;Jang, Woo-Hyuk
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2003.10a
    • /
    • pp.7-16
    • /
    • 2003
  • In this paper, we propose a probabilistic framework to predict the interaction probability of proteins. The notion of domain combination and domain combination pair is newly introduced and the prediction model in the framework takes domain combination pair as a basic unit of protein interactions to overcome the limitations of the conventional domain pair based prediction systems. The framework largely consists of prediction preparation and service stages. In the prediction preparation stage, two appearance pro-bability matrices, which hold information on appearance frequencies of domain combination pairs in the interacting and non-interacting sets of protein pairs, are constructed. Based on the appearance probability matrix, a probability equation is devised. The equation maps a protein pair to a real number in the range of 0 to 1. Two distributions of interacting and non-interacting set of protein pairs are obtained using the equation. In the prediction service stage, the interaction probability of a protein pair is predicted using the distributions and the equation. The validity of the prediction model is evaluated fur the interacting set of protein pairs in Yeast organism and artificially generated non-interacting set of protein pairs. When 80% of the set of interacting protein pairs in DIP database are used as foaming set of interacting protein pairs, very high sensitivity(86%) and specificity(56%) are achieved within our framework.

  • PDF

Suggestion of Prediction Equation for Environmental Noise of Saemaeul Train (새마을 열차 환경소음 예측식 제안)

  • Cho, Jun-Ho;Koh, Hyo-In;Kim, Jae-Chul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.2 s.107
    • /
    • pp.156-162
    • /
    • 2006
  • For the reduction and efficient management of railway noise, first of all prediction of railway noise is necessarily requisited. Many studies for prediction of railway nearby noise have been accomplished. But it is impossible to predict easily and exactly for the Korean Railway, because the acoustic powers for each rolling stock operated in Korea have not been built yet. So in this study, Prediction model equation for environmental noise for Korean rolling stock Saemaeul was suggested using SEL of engine and rolling noise component separately. Finally for the validation of prediction equation, the predicted result was compared to the measured.

Suggestion of Prediction Equation for Environmental Noise of Saemaeul Trains (새마을 열차 환경소음 예측식 제안)

  • Cho, Jun-Ho;Kim, Jae-Chul;Koh, Hyo-In;Han, Hwan-Su
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.371-376
    • /
    • 2005
  • For the reduction and efficient management of railway noise, first of all prediction of railway noise is necessarily requisited. Many studies for prediction of railway nearby noise have been accomplished. But it is impossible to predict easily and exactly for the Korean Railway, because the acoustic powers for each rolling stock operated in Korea have not been built yet. So in this study, prediction model equation for environmental noise for Korean rolling stock Saemaeul was suggested using SEL of engine and roiling noise component separately. Finally for the validation of prediction equation, the predicted result was compared to the measured.

  • PDF

The Prediction of Remaining Service Life of Land Concrete Due to Steel Corrosion (철근부식에 의한 육지 콘크리트의 잔존수명 예측)

  • 정우용;윤영수;송하원;변근주
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.5
    • /
    • pp.69-80
    • /
    • 2000
  • This paper presents the prediction of remaining service life of the concrete due to steel corrosion caused by the following three cases; carbonation, using sea sand and using deicing salts. The assessment of initiation period was generalized considering the existing perdiction models in the literature, corrosion experiment and field assessment. To evaluate the prediction equation of rust growth, the corrosion accelerating experiments was performed. The polarization resistance was measured by potentiostat and the conversion coefficient of polarzation resistance to corrosion rate was determined by the measurement of real mass loss. Chloride content, carbonation, cover depth, relative humidity, water-cement ratio(W/C), and the use of deicing salts were taken into account and the resulting prediction equation of rust growth was proposed on the basis of these properties. The proposed equation is to predict the rust growth during any specified period of time and be effective in particular for predicting service life of concrete in the case of using sea sand.

Springback Prediction of Tailor Rolled Blank in Hot Stamping Process by Partial Heating (국부가열을 이용한 핫스탬핑 공정에서 Tailor Rolled Blank의 스프링백 예측)

  • Shim, G.H.;Kim, J.H.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.25 no.6
    • /
    • pp.396-401
    • /
    • 2016
  • Recently, Multi-strength hot stamping process has been widely used to achieve lightweight and crashworthiness in automotive industry. In concept of multi-strength hot stamping process, process design of tailor rolled blank(TRB) in partial heating is difficult because of thickness and temperature variation of blank. In this study, springback prediction of TRB in partial heating process was performed considering its thickness and temperature variation. In partial heating process, TRB was heated up to $900^{\circ}C$ for thicker side and below $Ac_3$ transformation temperature for thinner side, respectively. Johnson-Mehl-Avrami-Kolmogorov(JMAK) equation was applied to calculate austenite fraction according to heating temperature. Calculated austenite fraction was applied to FE-simulation for the prediction of springback. Experiment for partial heating process of TRB was also performed to verify prediction accuracy of FE-simulation coupled with JMAK equation.