• Title/Summary/Keyword: Pristimerin

Search Result 6, Processing Time 0.024 seconds

Pristimerin, a Naturally Occurring Triterpenoid, Exerts Potent Anticancer Effect in Colon Cancer Cells

  • Seo, Hee Won;Park, Ju-Hyung;Lee, Ji Yeon;Park, Hyun-Ju;Kim, Jin-Kyung
    • Biomedical Science Letters
    • /
    • v.24 no.1
    • /
    • pp.15-22
    • /
    • 2018
  • Pristimerin is a triterpene compound isolated from plant extracts that reportedly possesses antitumor, antioxidant, and anti-inflammatory activities. The current study was designed to evaluate the antitumor effects of pristimerin on human colon cancer cells. Treatment of the human colon cancer cells, HCT116 and SW480, with pristimerin led to a dose-dependent decrease in cell proliferation. Flow cytometry experiments showed that pristimerin increased cell apoptotic rate and decreased the mitochondrial membrane potential in HCT116 and SW480 cells. Western blot assay showed that pristimerin induced increased cleavage of caspase-3, -7, -8, and poly ADP ribose polymerase. Treatment with pristimerin also caused a marked decrease in the expression of Bcl-2 and Bcl-xL. Additionally, the levels of phosphorylated AKT and forkhead box O3a (FOXO3a) were decreased in pristimerin-treated colon cancer cells. Taken together, our study illustrated that pristimerin promoted apoptosis via the AKT/FOXO3a signaling pathway in colon cancer cells, elucidating that it might be considered as a potential agent for colon cancer therapy.

Pristimerin Inhibits Breast Cancer Cell Migration by Up-regulating Regulator of G Protein Signaling 4 Expression

  • Mu, Xian-Min;Shi, Wei;Sun, Li-Xin;Li, Han;Wang, Yu-Rong;Jiang, Zhen-Zhou;Zhang, Lu-Yong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.4
    • /
    • pp.1097-1104
    • /
    • 2012
  • Background/Aim: Pristimerin isolated from Celastrus and Maytenus spp can inhibit proteasome activity. However, whether pristimerin can modulate cancer metastasis is unknown. Methods: The impacts of pristimerin on the purified and intracellular chymotrypsin proteasomal activity, the levels of regulator of G protein signaling 4 (RGS 4) expression and breast cancer cell lamellipodia formation, and the migration and invasion were determined by enzymatic, Western blot, immunofluorescent, and transwell assays, respectively. Results: We found that pristimerin inhibited human chymotrypsin proteasomal activity in MDA-MB-231 cells in a dose-dependent manner. Pristimerin also inhibited breast cancer cell lamellipodia formation, migration, and invasion in vitro by up-regulating RGS4 expression. Thus, knockdown of RGS4 attenuated pristimerin-mediated inhibition of breast cancer cell migration and invasion. Furthermore, pristimerin inhibited growth and invasion of implanted breast tumors in mice. Conclusion: Pristmerin inhibits proteasomal activity and increases the levels of RGS4, inhibiting the migration and invasion of breast cancer cells.

Pristimerin Inhibits Inducible Nitric Oxide Synthase Expression Induced by TLR Agonists

  • Kim, Su-Yeon;Heo, Sung-Hye;Park, Sin-Aye;Youn, Hyung-Sun
    • Biomedical Science Letters
    • /
    • v.25 no.1
    • /
    • pp.60-65
    • /
    • 2019
  • Toll-like receptors (TLRs) are one of the families of pattern recognition receptors (PRR) operating in the innate immunity. TLRs have the ability to recognize relatively conserved microbial components, which are generally referred to as pathogen-associated molecular patterns (PAMPs). The activation of TLRs signaling leads to the activation of $NF-{\kappa}B$ and the expression of pro-inflammatory gene products such as cytokines and inducible nitric oxide synthase (iNOS). To evaluate the therapeutic potential of pristimerin, which is a naturally occurring triterpenoid compound from Celastraceae plants, iNOS expression induced by MALP-2 (TLR2 and TLR6 agonist), Poly[I:C] (TLR3 agonist), or LPS (TLR4 agonist) were examined. Pristimerin suppressed the iNOS expression induced by MALP-2, Poly[I:C], or LPS. These results suggest that pristimerin can modulate TLRs signaling pathways leading to decreased inflammatory gene expression.

Potentially Cytotoxic Triterpenoids from the Root Bark of Siphonodon celastrineus Griff.

  • Niampoka, Chokchai;Suttisri, Rutt;Bavovada, Rapepol;Takayama, Hiromitsu;Aimi, Norio
    • Archives of Pharmacal Research
    • /
    • v.28 no.5
    • /
    • pp.546-549
    • /
    • 2005
  • A new oleanane-triterpene, 3${\beta}$-acetoxy-11${\alpha}$-benzoyloxy-13${\beta}$-hydroxyolean-1 2-one (1), was isolated along with a known quinone-methide triterpene, pristimerin (2), from the root bark of Siphonodon celastrinneus Griff., a Thai medicinal plant of the family Celastraceae. Their structures were determined based on spectroscopic analysis.

Downregulation of fungal cytochrome c peroxidase expression by antifungal quinonemethide triterpenoids

  • Seo, Woo-Duck;Lee, Dong-Yeol;Park, Ki Hun;Kim, Jin-Hyo
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.4
    • /
    • pp.281-284
    • /
    • 2016
  • To handle the development of antifungal drug resistance, the development of new structural modules and new modes of action for antifungals have been highlighted recently. Here, the antifungal activity of quinonemethidal triterpenoids such as celastrol, dihydrocelastrol, iguestein, pristimerin, and tingenone isolated from Tripterygium regelii were identified (MIC $0.269-19.0{\mu}M$). C. glabrata was the most susceptible to quinonemethide among the tested fungi. Furthermore, quinonemethide suppressed cyctochrome c peroxidase expression dramatically, decreasing fungal viability caused by the accumulation of hydrogen peroxide. Thus, cyctochrome c peroxidase downregulation of quinonemethide may be a key mode of action for antifungals.

Study on the Antitumor Activity of Tripterygium Regelii Sprague (미역줄나무의 항암활성에 관한 연구)

  • Park, Wan-Su
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.2
    • /
    • pp.441-445
    • /
    • 2005
  • Tripterygium regelii has been used as an oriental medicine, especially antiparasitic, anti-inflammatory and detoxifying agents in East asia. During our research to develop new antitumor agents from natural products, MeOH ext. and CH2Cl2 ext. of Tripterygium regelii showed the potent antitumor activity. In order to purify active compounds from Tripterygium regelii, activity-guided fractionation was carried out. Silica gel and RP-18 column chromatography for the active fraction led to the isolation of two compounds and their antitumor activities were studied. Those two compounds didn't show potent antitumor activity against human tumor cell lines. The structure of two compounds were determined by $^1H-NMR$, $^{13}C-NMR$, DEPT, $^1H-^{13}C$ COSY and IR spectrum. Compound I and Compound II were turned out to be Celastrol, and ${\beta}-sitosteryl-3-o-{\beta}-D-glucopyranoside$ respectively.