• Title/Summary/Keyword: Protein-protein interaction networks

Search Result 54, Processing Time 0.026 seconds

Protein-protein Interaction Networks: from Interactions to Networks

  • Cho, Sa-Yeon;Park, Sung-Goo;Lee, Do-Hee;Park, Byoung-Chul
    • BMB Reports
    • /
    • v.37 no.1
    • /
    • pp.45-52
    • /
    • 2004
  • The goal of interaction proteomics that studies the protein-protein interactions of all expressed proteins is to understand biological processes that are strictly regulated by these interactions. The availability of entire genome sequences of many organisms and high-throughput analysis tools has led scientists to study the entire proteome (Pandey and Mann, 2000). There are various high-throughput methods for detecting protein interactions such as yeast two-hybrid approach and mass spectrometry to produce vast amounts of data that can be utilized to decipher protein functions in complicated biological networks. In this review, we discuss recent developments in analytical methods for large-scale protein interactions and the future direction of interaction proteomics.

Construction of a Protein-Protein Interaction Network for Chronic Myelocytic Leukemia and Pathway Prediction of Molecular Complexes

  • Zhou, Chao;Teng, Wen-Jing;Yang, Jing;Hu, Zhen-Bo;Wang, Cong-Cong;Qin, Bao-Ning;Lv, Qing-Liang;Liu, Ze-Wang;Sun, Chang-Gang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.13
    • /
    • pp.5325-5330
    • /
    • 2014
  • Background: Chronic myelocytic leukemia is a disease that threatens both adults and children. Great progress has been achieved in treatment but protein-protein interaction networks underlining chronic myelocytic leukemia are less known. Objective: To develop a protein-protein interaction network for chronic myelocytic leukemia based on gene expression and to predict biological pathways underlying molecular complexes in the network. Materials and Methods: Genes involved in chronic myelocytic leukemia were selected from OMIM database. Literature mining was performed by Agilent Literature Search plugin and a protein-protein interaction network of chronic myelocytic leukemia was established by Cytoscape. The molecular complexes in the network were detected by Clusterviz plugin and pathway enrichment of molecular complexes were performed by DAVID online. Results and Discussion: There are seventy-nine chronic myelocytic leukemia genes in the Mendelian Inheritance In Man Database. The protein-protein interaction network of chronic myelocytic leukemia contained 638 nodes, 1830 edges and perhaps 5 molecular complexes. Among them, complex 1 is involved in pathways that are related to cytokine secretion, cytokine-receptor binding, cytokine receptor signaling, while complex 3 is related to biological behavior of tumors which can provide the bioinformatic foundation for further understanding the mechanisms of chronic myelocytic leukemia.

Extraction of Protein-Protein Interactions based on Convolutional Neural Network (CNN) (Convolutional Neural Network (CNN) 기반의 단백질 간 상호 작용 추출)

  • Choi, Sung-Pil
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.3
    • /
    • pp.194-198
    • /
    • 2017
  • In this paper, we propose a revised Deep Convolutional Neural Network (DCNN) model to extract Protein-Protein Interaction (PPIs) from the scientific literature. The proposed method has the merit of improving performance by applying various global features in addition to the simple lexical features used in conventional relation extraction approaches. In the experiments using AIMed, which is the most famous collection used for PPI extraction, the proposed model shows state-of-the art scores (78.0 F-score) revealing the best performance so far in this domain. Also, the paper shows that, without conducting feature engineering using complicated language processing, convolutional neural networks with embedding can achieve superior PPIE performance.

Analysis of Essential Proteins in Protein-Protein Interaction Networks (단백질 상호작용 네트워크에서 필수 단백질의 견고성 분석)

  • Ryu, Jae-Woon;Kang, Tae-Ho;Yoo, Jae-Soo;Kim, Hak-Yong
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.6
    • /
    • pp.74-81
    • /
    • 2008
  • Protein interaction network contains a small number of highly connected protein, denoted hub and many destitutely connected proteins. Recently, several studies described that a hub protein is more likely to be essential than a non-hub protein. This phenomenon called as a centrality-lethality rule. This nile is widely credited to exhibit the importance of hub proteins in the complex network and the significance of network architecture as well. To confirm whether the rule is accurate, we Investigated all protein interaction DBs of yeast in the public sites such as Uetz, Ito, MIPS, DIP, SGB, and BioGRID. Interestingly, the protein network shows that the rule is correct in lower scale DBs (e.g., Uetz, Ito, and DIP) but is not correct in higher scale DBs (e.g., SGD and BioGRID). We are now analyzing the features of networks obtained from the SGD and BioGRD and comparing those of network from the DIP.

G-Networks Based Two Layer Stochastic Modeling of Gene Regulatory Networks with Post-Translational Processes

  • Kim, Ha-Seong;Gelenbe, Erol
    • Interdisciplinary Bio Central
    • /
    • v.3 no.2
    • /
    • pp.8.1-8.6
    • /
    • 2011
  • Background: Thanks to the development of the mathematical/statistical reverse engineering and the high-throughput measuring biotechnology, lots of biologically meaningful genegene interaction networks have been revealed. Steady-state analysis of these systems provides an important clue to understand and to predict the systematic behaviours of the biological system. However, modeling such a complex and large-scale system is one of the challenging difficulties in systems biology. Results: We introduce a new stochastic modeling approach that can describe gene regulatory mechanisms by dividing two (DNA and protein) layers. Simple queuing system is employed to explain the DNA layer and the protein layer is modeled using G-networks which enable us to account for the post-translational protein interactions. Our method is applied to a transcription repression system and an active protein degradation system. The steady-state results suggest that the active protein degradation system is more sensitive but the transcription repression system might be more reliable than the transcription repression system. Conclusions: Our two layer stochastic model successfully describes the long-run behaviour of gene regulatory networks which consist of various mRNA/protein processes. The analytic solution of the G-networks enables us to extend our model to a large-scale system. A more reliable modeling approach could be achieved by cooperating with a real experimental study in synthetic biology.

Review of Biological Network Data and Its Applications

  • Yu, Donghyeon;Kim, MinSoo;Xiao, Guanghua;Hwang, Tae Hyun
    • Genomics & Informatics
    • /
    • v.11 no.4
    • /
    • pp.200-210
    • /
    • 2013
  • Studying biological networks, such as protein-protein interactions, is key to understanding complex biological activities. Various types of large-scale biological datasets have been collected and analyzed with high-throughput technologies, including DNA microarray, next-generation sequencing, and the two-hybrid screening system, for this purpose. In this review, we focus on network-based approaches that help in understanding biological systems and identifying biological functions. Accordingly, this paper covers two major topics in network biology: reconstruction of gene regulatory networks and network-based applications, including protein function prediction, disease gene prioritization, and network-based genome-wide association study.

Identification of Diseasomal Proteins from Atopy-Related Disease Network (아토피관련 질병 네트워크로부터 질병단백체 발굴)

  • Lee, Yoon-Kyeong;Yeo, Myeong-Ho;Kang, Tae-Ho;Yoo, Jae-Soo;Kim, Hak-Yong
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.4
    • /
    • pp.114-120
    • /
    • 2009
  • In this study, we employed the idea that disease-related proteins tend to be work as an important factor for architecture of the disease network. We initially obtained 43 atopy-related proteins from the Online Mendelian Inheritance in Man (OMIM) and then constructed atopy-related protein interaction network. The protein network can be derived the map of the relationship between different disease proteins, denoted disease interaction network. We demonstrate that the associations between diseases are directly correlated to their underlying protein-protein interaction networks. From constructed the disease-protein bipartite network, we derived three diseasomal proteins, CCR5, CCL11, and IL/4R. Although we use the relatively small subnetwork, an atopy-related disease network, it is sufficient that the discovery of protein interaction networks assigned by diseases will provide insight into the underlying molecular mechanisms and biological processes in complex human disease system.

Protein Interaction Databases and Its Application (단백질 상호작용 데이터베이스 현황 및 활용 방안)

  • Kim, Min Kyung;Park, Hyun Seok
    • IMMUNE NETWORK
    • /
    • v.2 no.3
    • /
    • pp.125-132
    • /
    • 2002
  • In the past, bioinformatics was often regarded as a difficult and rather remote field, practiced only by computer scientists and not a practical tool available to biologists. However, the various on-going genome projects have had a serious impact on biological sciences in various ways and now there is little doubt that bioinformatics is an essential part of the research environment, with a wealth of biological information to analyze and predict. Fully sequenced genomes made us to have additional insights into the functional properties of the encoded proteins and made it possible to develop new tools and schemes for functional biology on a proteomic scale. Among those are the yeast two-hybrid system, mass spectrometry and microarray: the technology of choice to detect protein-protein interactions. These functional insights emerge as networks of interacting proteins, also known as "pathway informatics" or "interactomics". Without exception it is no longer possible to make advances in the signaling/regulatory pathway studies without integrating information technologies with experimental technologies. In this paper, we will introduce the databases of protein interaction worldwide and discuss several challenging issues regarding the actual implementation of databases.

Proteinca : A System for Analysis/Visualization of Protein-Protein Interaction Networks (Proteinca : 단백질-단백질 상호작용 네트워크의 분석 및 가시화 시스템)

  • Yoon, Ji-Hyun;Jin, Hee-Jeong;Cho, Hwan-Gue
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2004.11a
    • /
    • pp.234-243
    • /
    • 2004
  • 단백질-단백질 상호작용(PPI :Protein-Protein Interaction) 데이터는 생물체가 어떠한 메커니즘으로 생명을 유지하는지에 대한 정보를 담고 있다. 최근에는 생물학자들의 실험에 의해 많은 데이터가 축적되어 있으며, 데이터베이스로 구축되어 인터넷에 공개되어 있다. PPI 데이터는 단백질를 노드(node)로, 상호작용은 에지(edge)로 갖는 그래프(Graph) 구조로 표현 가능하다. 본 논문에서는 사용자가 PPI 데이터를 쉽게 가공하고 분석할 수 있도록 그래프 이론 기반에 기반하여 구현한 Proteinca(PROTEin INteraction CAbaret) 시스템에 대해 소개한다. Proteinca에 대한 자세한 정보는 http://jade.cs.pusan.ac.kr/${\sim}$proten에서 볼 수 있다.

  • PDF

Identifying Responsive Functional Modules from Protein-Protein Interaction Network

  • Wu, Zikai;Zhao, Xingming;Chen, Luonan
    • Molecules and Cells
    • /
    • v.27 no.3
    • /
    • pp.271-277
    • /
    • 2009
  • Proteins interact with each other within a cell, and those interactions give rise to the biological function and dynamical behavior of cellular systems. Generally, the protein interactions are temporal, spatial, or condition dependent in a specific cell, where only a small part of interactions usually take place under certain conditions. Recently, although a large amount of protein interaction data have been collected by high-throughput technologies, the interactions are recorded or summarized under various or different conditions and therefore cannot be directly used to identify signaling pathways or active networks, which are believed to work in specific cells under specific conditions. However, protein interactions activated under specific conditions may give hints to the biological process underlying corresponding phenotypes. In particular, responsive functional modules consist of protein interactions activated under specific conditions can provide insight into the mechanism underlying biological systems, e.g. protein interaction subnetworks found for certain diseases rather than normal conditions may help to discover potential biomarkers. From computational viewpoint, identifying responsive functional modules can be formulated as an optimization problem. Therefore, efficient computational methods for extracting responsive functional modules are strongly demanded due to the NP-hard nature of such a combinatorial problem. In this review, we first report recent advances in development of computational methods for extracting responsive functional modules or active pathways from protein interaction network and microarray data. Then from computational aspect, we discuss remaining obstacles and perspectives for this attractive and challenging topic in the area of systems biology.