• Title/Summary/Keyword: Purinergic receptors

Search Result 21, Processing Time 0.018 seconds

Characterization of Purinergic Receptors in Rat Atrium (흰쥐 심방근에서의 Purinergic 수용체의 특성)

  • Kim, Jae-Ha
    • The Korean Journal of Pharmacology
    • /
    • v.30 no.2
    • /
    • pp.181-190
    • /
    • 1994
  • In rat atrium the characteristics of purinergic receptors were investigated by observing the effects of some purinergic receptor agonists and antagonists on action potential and contractile force. The statistically significant effects of $ATP(10^{-6}{\sim}10^{-3}M)$ and adenosine $(10^{-6}{\sim}10^{-3}M)$ on normal action potential characteristics were a dose-dependent shortening of action potential duration $(APD_{90})$ by both agents and hyperpolarization by $ATP(10^{-4},10^{-3}M)$. $CAP(10^{-8}{\sim}10^{-4}M)$, an $A_1$ adenosine receptor agonist, shortened $(APD_{90})$ markedly in a dose-dependent manner and these effects were almost abolished by $DPCPX\;(10^{-6}\;M), an $A_1$, adenosine receptor antagonist, but not affected by $DMPX(2{\times}10^{-6}\;M)$, an $A_2$ adenosine receptor agonist. On the other hand, CGS $21680(10^{-7}{\sim}10^{-4}M)$, an $A_2$ adenosine receptor agonist, elicited a slight shortening of $(APD_{90})$ and these effects were inhibited by DPCPX but persisted in the presence of DPMX. Adenosine $(10^{-6}{\sim}10{\-4}\;M)$ decreased the basal contraction of atrial muscle in a dose-dependent manner and these effects were not inhibited by DMPX but by DPCPX. These results suggests that purinergic receptor agonists depress the cardiac activity by a short ening of action potential duration and this effect is mostly mediated by $A_1$ adenosine receptors in rat atrium.

  • PDF

Characteristics of Purinergic Receptor Expressed in Human Retinoblastoma Cells

  • Kim, Dae-Ran;Kong, In-Deok
    • Biomedical Science Letters
    • /
    • v.13 no.4
    • /
    • pp.333-339
    • /
    • 2007
  • Recently, much attention has been paid to human retinoblastoma since it provide a good model system for studying mechanisms underlying cell growth, differentiation, proliferation, and apoptosis, and for developing cancer therapy. However, until now it is unclear whether purinergic receptors are involved in the calcium mobilization in the retinoblastoma cells. In this regard, we measured possible purinergic signaling in WERI-Rb-1 cells using $Ca^{2+}$ imaging technique and RT-PCR method. ATP-induced $[Ca^{2+}]_i$ transients was maintained to about $90.7{\pm}1.0%$ of the control (n=48) even in the absence of extracellular calcium. The ATP-induced intracellular calcium response was only attained to $10.4{\pm}1.8%$ (n=55) of peak amplitude of the control after preincubation of 1 ${\mu}MU-73122$, a PLC inhibitor, but it was not affected by 1 ${\mu}MU-73343$, a inactive form of U-73122. And also ATP-induced $[Ca^{2+}]_i$ rise was almost attenuated by 20 ${\mu}M$ 2-APB, a putative $IP_3$ receptor inhibitor. Two subtypes of $IP_3$ receptor $(IP_{3-1}R,\;IP_{3-2}R)$ were identified by a RT-PCR method. These findings suggest that purinergic stimuli can cause calcium mobilization via $PLC-IP_3$ pathway after the activation of P2Y receptors in the retinoblastoma cells, which may play important roles in cell proliferation, differentiation, growth, and cell death.

  • PDF

Purinergic-mediated Calcium Homeostasis and Dopamine R~lease in PC 12 Cells: Effect of Ethanol

  • Kim, Won-Ki
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1997.07a
    • /
    • pp.16-16
    • /
    • 1997
  • Extracelluar ATP evokes many biological processes, including neuronal excitation and neurotransmitter secretion, through activation of purinergic P2 receptors. Although excitatory and inhibitory receptor-operated channels (ROC) and voltage-dependent calcium channels (VDCC) have been reported to be altered by acute and chronic exposure to ethanol, little is known of the ethanol effects on purinergic receptor-operated channels in neuronal cells.(omitted)

  • PDF

Extracellular Nucleotides Can Induce Chemokine (C-C motif) Ligand 2 Expression in Human Vascular Smooth Muscle Cells

  • Kim, Jeung-Il;Kim, Hye-Young;Kim, Sun-Mi;Lee, Sae-A;Son, Yong-Hae;Eo, Seong-Kug;Rhim, Byung-Yong;Kim, Koanhoi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.1
    • /
    • pp.31-36
    • /
    • 2011
  • To understand the roles of purinergic receptors and cellular molecules below the receptors in the vascular inflammatory response, we determined if extracellular nucleotides up-regulated chemokine expression in vascular smooth muscle cells (VSMCs). Human aortic smooth muscle cells (AoSMCs) abundantly express $PSY_1$, $PSY_6$, and $PSY_{11}$ receptors, which all respond to extracellular nucleotides. Exposure of human AoSMCs to $NAD^+$, an agonist of the human $PSY_{11}$ receptor, and $NADP^+$ as well as ATP, an agonist for $PSY_1$ and $PSY_{11}$ receptors, caused increase in chemokine (C-C motif) ligand 2 gene (CCL2) transcript and CCL2 release; however, UPT did not affect CCL2 expression. CCL2 release by $NAD^+$ and $NADP^+$ was inhibited by a concentration dependent manner by suramin, an antagonist of P2-purinergic receptors. $NAD^+$ and $NADP^+$ activated protein kinase C and enhanced phosphorylation of mitogen-activated protein kinases and Akt. $NAD^+$- and $NADP^+$-mediated CCL2 release was significantly attenuated by SP6001250, U0126, LY294002, Akt inhibitor IV, RO318220, GF109203X, and diphenyleneiodium chloride. These results indicate that extracellular nucleotides can promote the proinflammatory VSMC phenotype by up-regulating CCL2 expression, and that multiple cellular elements, including phosphatidylinositol 3-kinase, Akt, protein kinase C, and mitogen-activated protein kinases, are involved in that process.

Molecular Vibration-Activity Relationship in the Agonism of Adenosine Receptors

  • Chee, Hyun Keun;Oh, S. June
    • Genomics & Informatics
    • /
    • v.11 no.4
    • /
    • pp.282-288
    • /
    • 2013
  • The molecular vibration-activity relationship in the receptor-ligand interaction of adenosine receptors was investigated by structure similarity, molecular vibration, and hierarchical clustering in a dataset of 46 ligands of adenosine receptors. The resulting dendrogram was compared with those of another kind of fingerprint or descriptor. The dendrogram result produced by corralled intensity of molecular vibrational frequency outperformed four other analyses in the current study of adenosine receptor agonism and antagonism. The tree that was produced by clustering analysis of molecular vibration patterns showed its potential for the functional classification of adenosine receptor ligands.

Characteristics of Purinergic Receptor Expressed in 3T3-L1 Preadipocytes

  • Lee, Hyung-Joo;Baik, Joon-Heum;Kim, Min-Jeong;Kim, Na-Hyun;Kong, In-Deok
    • Biomedical Science Letters
    • /
    • v.15 no.4
    • /
    • pp.319-326
    • /
    • 2009
  • Extracellular ATP elicits diverse physiological effects by binding to the G-protein-coupled P2Y receptors on the plasma membrane. In addition to the short-term effects of extracellular nucleotides on cell functions, there is evidence that such purinergic signalling can have long-term effects on cell proliferation, differentiation and death. The 3T3-L1 cell line derived from mouse embryo is a well-established and commonly utilized in vitro model for adipocytes differentiation and function. However, the distributions and roles of P2Y subtypes are still unknown in the preadipocyte. In this study, we identified the distributions and roles of P2Y subtypes in preadipocyte using $Ca^{2+}$ imaging and realtime PCR. ATP increased the $[Ca^{2+}]_i$ in a concentration-dependent manner. ATP increased $Ca^{2+}$ in absence and/or presence of extracellular $Ca^{2+}$. Suramin, non-selective P2Y blocker, largely blocked the ATP-induced $Ca^{2+}$ response. U73122, a PLC inhibitor, completely inhibited $Ca^{2+}$ mobilization in 3T3-L1 cells. The mRNA expression by realtime PCR of P2Y subtypes was $P2Y_2:P2Y_5:P2Y_6=1.0:12.5:0.3$. In conclusion, we showed that $P2Y_5$ receptor is a dominant purinergic receptor in preadipocytes, and multiple P2Y receptors could involve in differentiation and migration via regulating of intracellular calcium concentration.

  • PDF

Existence of Cholinergic and Purinergic Receptor on the Detrusor Muscle of Rat Urinary Bladder (흰쥐 적출 배뇨근에서 콜린성 및 퓨린성 수용체의 존재)

  • Choi, Tae-Su;Kwon, Oh-Cheol;Ha, Jeoung-Hee;Lee, Kwang-Youn;Kim, Won-Joon
    • Journal of Yeungnam Medical Science
    • /
    • v.8 no.2
    • /
    • pp.138-149
    • /
    • 1991
  • This study was aimed at investigation of the stimulatory innervations on the rat urinary bladder. Detrusor muscle strips of 15 mm long were suspended in isolated muscle chambers containing 1 ml of PSS maintained at $37^{\circ}C$ and aerated with 95% $O_2/5%CO_2$. Isometric myography was perfomed, and the results were as followings : Muscle strips showed "on-contraction" by electric field stimulation (EFS) frequency-dependently. The EFS-induced contraction was not affected by hexamethonium, a ganglion blocker, but abolished, by tetrodotoxin, a nerve conduction blocker. Physostigmine, a cholinesterase inhibitor enhanced the EFS-induced contraction which was inhibited by hemicholinium, an inhibitor of choline uptake at the cholinergic nerve ending. Such an EFS-induced contraction was antagonized by atropine only partially, and the atropine-resistant portion was completely abolished by the desensitization of purinergic receptors by prolonged incubatin of the strips in the presence of high concentratin of ATP. Bethanechol, a cholinergic agonist, elicited concentration-dependent contraction. Adenosine triphosphate (ATP), a purinergic agonist, induced a weak but concentration-dependent contraction of short duration. Bethanechol-induced contraction was not affected by ATP-desensitization, and ATP-induced contraction was not affected by tetrodotoxin. These results suggest that there are at least two main stimulatory components of innervations in the detrusor muscle, cholinergic muscarinic and purinergic ; and those receptors are independent each other.

  • PDF

Extracellular ATP Stimulates $Na^+\;and\;Cl^-$ Transport through the Activation of Multiple Purinergic Receptors on the Apical and Basolateral Membranes in M-1 Mouse Cortical Collecting Duct Cells

  • Jung, Jin-Sup;Hwang, Sook-Mi;Lee, Ryang-Hwa;Kang, Soo-Kyung;Woo, Jae-Suk;Kim, Yong-Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.3
    • /
    • pp.231-241
    • /
    • 2001
  • The mammalian cortical collecting duct (CCD) plays a major role in regulating renal NaCl reabsorption, which is important in $Na^+$ and $Cl^-$ homeostasis. The M-1 cell line, derived from the mouse cortical collecting duct, has been used as a mammalian model of the study on the electrolytes transport in CCD. M-1 cells were grown on collagen-coated permeable support and short circuit current $(I_{sc})$ was measured. M-1 cells developed amiloride-sensitive current $5{\sim}7$ days after seeding. Apical and basolateral addition of ATP induced increase in $I_{sc}$ in M-1 cells, which was partly retained in $Na^+-free$ or $Cl^--free$ solution, indicating that ATP increased $Na^+$ absorption and $Cl^-$ secretion in M-1 cells. $Cl^-$ secretion was mediated by the activation of apical cystic fibrosis transmembrane regulator (CFTR) chloride channels and $Ca^{2+}-activated$ chloride channels, but $Na^+$ absorption was not mediated by activation of epithelal sodium channel (ENaC). ATP increased cAMP content in M-1 cells. The RT-PCR analysis demonstrated that M-1 cells express $P2Y_2,\;P2X_3\;and\;P2Y_4$ receptors. These results showed that ATP regulates $Na^+$ and $Cl^-$ transports via multiple P2 purinoceptors on the apical and basolateral membranes in M-1 cells.

  • PDF

The purinergic receptor P2X5 contributes to bone loss in experimental periodontitis

  • Kim, Hyunsoo;Kajikawa, Tetsuhiro;Walsh, Matthew C.;Takegahara, Noriko;Jeong, Yun Hee;Hajishengallis, George;Choi, Yongwon
    • BMB Reports
    • /
    • v.51 no.9
    • /
    • pp.468-473
    • /
    • 2018
  • Purinergic receptor signaling is increasingly recognized as an important regulator of inflammation. The P2X family purinergic receptors P2X5 and P2X7 have both been implicated in bone biology, and it has been suggested recently that P2X5 may be a significant regulator of inflammatory bone loss. However, a role for P2X5 in periodontitis is unknown. The present study aimed to evaluate the functional role of P2X5 in ligature-induced periodontitis in mice. Five days after placement of ligature, analysis of alveolar bone revealed decreased bone loss in $P2rx5^{-/-}$ mice compared to $P2rx7^{-/-}$ and WT control mice. Gene expression analysis of the gingival tissue of ligated mice showed that IL1b, IL6, IL17a and Tnfsf11 expression levels were significantly reduced in $P2rx5^{-/-}$ compared to WT mice. These results suggest the P2X5 receptor may regulate bone loss related to periodontitis and it may thus be a novel therapeutic target in this oral disease.

Expression and Characterization of Purinergic Receptor, $P2Y_{10}$ in Hematopoietic Stem Cells

  • Lee Eun-Jong;Kim Dong-Ku
    • Reproductive and Developmental Biology
    • /
    • v.29 no.2
    • /
    • pp.109-115
    • /
    • 2005
  • Hematopoietic stem cells (HSC) are multipotent cells that reside in the bone marrow and replenish all adult hematopoietic lineages throughoutthe lifetime. In this study, we analyzed the expression of receptors of $P2Y_{10}$, purinergic receptor families in murine hematopoietic stem cells, hematopoietic progenitor cells. In addition, the biological activity of $P2Y_{10}$ was investigated with B lymphocyte cell line, Ba/F3 in effect to cell growth and cell cycle. From the analysis of expression in hematopoieticstem cell. and progenitor with RT-PCR, $P2Y_{10}$ was strongly expressed in murine hematopoieticstem cells (c-kit+ Sca-l+ Lin-) and progenitor cell population, such as c-kit- Sca-l+ Lin-, c-kit+ Sca-l- Lin- and c-kit- Sca-l- Lin-. To investigate the biological effects by $P2Y_{10}$, retroviral vector from subcloned murine $P2Y_{10}$ cDNA was used fur gene introduction into Ba/F3 cells, and stable transfectant cells were obtained by flow cytometry sorting. In cell proliferation assay, the proliferation ability of $P2Y_{10}$ receptor gene­transfected cells was strongly inhibited, and the cell cycle was arrested at G1 phase. These result suggest that the $P2Y_{10}$ may be involved the biological activity in hematopoietic stem cells and immature B lymphocytes.