• 제목/요약/키워드: Rab5 GTP-binding proteins

검색결과 2건 처리시간 0.022초

Sequence Homologies of GTP-binding Domains of Rab and Rho between Plants and Yeast/Animals Suggest Structural and Functional Similarities

  • Lee, Ji-Yeon;Lee, Dong-Hee
    • Journal of Plant Biology
    • /
    • 제39권2호
    • /
    • pp.85-92
    • /
    • 1996
  • Small GTP-binding proteins are divided into three major group: Ras, Rho and Ypt/Rab. They have the conserved regions designed G1 to G5 that are critical in GDP/GTP exchange, GTP-induced conformational change and GTP hydrolysis. We isolated and characterized genomic DNA or cDNAfragments encoding G1 to G3 domains of small GTP-binding protein Rab and Rho from several plant species using two different PCR-based cloning strategies. Seven rab DNA fragments were isolated from 4 different plants, mung-bean, tobacco, rice and pepper using two degenerate primers corresponding to the GTP-binding domain G1 and G3 in small GTP-binding proteins. The amino acid sequences among these rab DNA fragments and other known small GTP-binding proteins shows that they belong to the Ypt/Rab family. Six rho DNA fragments were isolated from 5 different plants, mung-bean, rice, Arabidopsis, Allium and Gonyaulax using the nested PCR method that involves four degenerate primers corresponding to the GTP-binding domain G1, G3 and G4. The rho DNA fragments cloned show more than 90% homology to each other. Sequence comparison between plant and other known Rho family genes suggests that they are closely related (67 to 82% amino acid identity). Sequence analysis and southern blot analysis of rab and rho in mung-bean suggest than thses genes are encoded by multigene family in mung-bean.

  • PDF

The expression of Rab5 and its effect on invasion, migration and exosome secretion in triple negative breast cancer

  • Lei Qiao;Chao Dong;Jiaojiao Zhang;Gang Sun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제27권2호
    • /
    • pp.157-165
    • /
    • 2023
  • Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer and current therapeutic strategies are limited in their effectiveness. The expressions of Rab5 and the M2 tumor-associated macrophage marker CD163 in tissues were detected by Western blot. The migration and invasion of cells were determined using a Transwell assay. The expressions of the exosome markers were evaluated by Western blot. The polarization of human macrophages (THP-1) was determined by incubation of THP-1 cells with conditioned medium or exosomes collected from MDA-MB-231 cells with indicated transfections or by a coculture system of THP-1 and MDA-MB-231 cells. The M1 and M2 macrophage markers were evaluated by qRT-PCR. The expression of Rab5 in TNBC was significantly higher than that in normal breast tissue. Rab5 expressions in triple-negative and luminal A breast cancer were higher than those in other molecular subtypes. Higher CD163 expression was observed in triple-negative breast cancer and in triple-negative and luminal B subtypes. Rab5 knockdown suppressed but Rab5 overexpression promoted the migration and invasion capacity of MDA-MB-231 cells. The levels of CD63 and CD9 in the medium of Rab5 knockdown cells were lower than those in control cells, whereas higher levels of CD63 and CD9 were observed in Rab5 overexpression cells. Rab5 knockdown decreased the excretion but did not alter the diameter of the exosomes. Knockdown of Rab5 facilitated the anti-tumor polarization of macrophages, which was partially reversed by Rab5 overexpression. Therefore, Rab5 is expected to be a potential therapeutic target for triple-negative breast cancer.