• Title/Summary/Keyword: Raman scattering spectroscopy

Search Result 110, Processing Time 0.027 seconds

Polarized Raman Spectroscopy of Graphene

  • Cheong, Hyeon-Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.5-5
    • /
    • 2011
  • Raman spectroscopy has become one of the most widely used tools in graphene research. The resonant Raman scattering process that gives rise to the observed strong Raman signal carries information regarding the electronic structure as well as the structural properties. When polarization of the incident excitation laser light or the scattered signal is carefully controlled, more information on the electronic and structural properties becomes available. In this tutorial, the basics of polarized Raman scattering experiments will be introduced first. Then several examples from real research will be highlighted to illustrate the application of polarized Raman spectroscopy in graphene research.

  • PDF

Surface-enhanced Raman scattering (SERS) spectroscopy: a versatile spectroscopic and analytical technique used in nanoscience and nanotechnology

  • Sur, Ujjal Kumar
    • Advances in nano research
    • /
    • v.1 no.2
    • /
    • pp.111-124
    • /
    • 2013
  • Surface-enhanced Raman scattering (SERS) effect deals with the enhancement of the Raman scattering intensity by molecules in the presence of a nanostructured metallic surface. The first observation of surface-enhanced Raman spectra was in 1974, when Fleischmann and his group at the University of Southampton, reported the first high-quality Raman spectra of monolayer-adsorbed pyridine on an electrochemically roughened Ag electrode surface. Over the last thirty years, it has developed into a versatile spectroscopic and analytical technique due to the rapid and explosive progress of nanoscience and nanotechnology. This review article describes the recent development in field of surface-enhanced Raman scattering research, especially fabrication of various SERS active substrates, mechanism of SERS effect and its various applications in both surface sciences and analytical sciences.

Tip Enhanced Nano Raman Scattering in Graphene

  • Mun, Seok Jeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.87.2-87.2
    • /
    • 2016
  • As an era of nano science approaches, the understanding on the shape and optical properties of various materials in a nanoscale range is getting important more seriously than ever. Accordingly the development of high spatial-temporal-spectral resolution measurement tools for characterization of nanomaterials/structures is highly required. Generally, the various properties of sample can be measured independently, e.g. to observe the structural property of sample, we use the scanning electron microscopy or atomic force microscopy, and to observe optical property, we have to use another independent measurement tool such as photoluminescence spectroscopy or Raman spectroscopy. In the case of nano-materials, however, it is very difficult to find out the same position of sample at every different measurement processes, and the condition of sample can be changed by the influence of first measurement. The tip enhanced Raman scattering(TERS), which can simultaneously measure the two or more information of sample with nanoscale spatial resolution, is one of solutions of this problem. In this talk, I will present our recent nano Raman scattering data of graphene that measured by TERS and optimized tip fabrication method for efficient experiment.

  • PDF

Raman Chemical Imaging Technology for Food and Agricultural Applications

  • Qin, Jianwei;Kim, Moon S.;Chao, Kuanglin;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • v.42 no.3
    • /
    • pp.170-189
    • /
    • 2017
  • Purpose: This paper presents Raman chemical imaging technology for inspecting food and agricultural products. Methods The paper puts emphasis on introducing and demonstrating Raman imaging techniques for practical uses in food analysis. Results & Conclusions: The main topics include Raman scattering principles, Raman spectroscopy measurement techniques (e.g., backscattering Raman spectroscopy, transmission Raman spectroscopy, and spatially offset Raman spectroscopy), Raman image acquisition methods (i.e., point-scan, line-scan, and area-scan methods), Raman imaging instruments (e.g., excitation sources, wavelength separation devices, detectors, imaging systems, and calibration methods), and Raman image processing and analysis techniques (e.g., fluorescence correction, mixture analysis, target identification, spatial mapping, and quantitative analysis). Raman chemical imaging applications for food safety and quality evaluation are also reviewed.

Characteristics of Raman scattering spectroscopy for $ZnS_{1-x}Te_x$ alloy semi- conductor ($ZnS_{1-x}Te_x$ 삼원 화합물 반도체의 라만 산란 특성)

    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.5
    • /
    • pp.223-228
    • /
    • 2002
  • We have studied the characteristics of Raman scattering spectroscopy from $_ZnS{1-x}Te_x$ alloys in the whole range of Te composition x. The Raman spectra showed two-mode behaviors for those alloys. The Raman line shape showed the changes of an asymmetry and broadening of that with Te composition x. The asymmetric broadening of the line shape could be explained with a spatial correlation model.

Coating gold nanoparticles to a glass substrate by spin-coat method as a surface-enhanced raman spectroscopy (SERS) plasmonic sensor to detect molecular vibrations of bisphenol-a (BPA)

  • Eskandari, Vahid;Hadi, Amin;Sahbafar, Hossein
    • Advances in nano research
    • /
    • v.13 no.5
    • /
    • pp.417-426
    • /
    • 2022
  • Bisphenol A (BPA) is one of the chemicals used in monomer epoxy resins and polycarbonate plastics. The surface-enhanced Raman spectroscopy (SERS) method is precise for identifying biological materials and chemicals at considerably low concentrations. In the present article, the substrates coated with gold nanoparticles have been studied to identify BPA and control the diseases caused by this chemical. Gold nanoparticles were made by a simple chemical method and by applying gold salt and trisodium citrate dihydrate reductant and were coated on glass substrates by a spin-coat approach. Finally, using these SERS substrates as plasmonic sensors and Raman spectroscopy, the Raman signal enhancement of molecular vibrations of BPA was investigated. Then, the molecular vibrations of BPA in some consumer goods were identified by applying SERS substrates as plasmonic sensors and Raman spectroscopy. The fabricated gold nanoparticles are spherical and quasi-spherical nanoparticles that confirm the formation of gold nanoparticles by observing the plasmon resonance peak at 517 nm. Active SERS substrates have been coated with nanoparticles, which improve the Raman signal. The enhancement of the Raman signal is due to the resonance of the surface plasmons of the nanoparticles. Active SERS substrates, gold nanoparticles deposited on a glass substrate, were fabricated for the detection of BPA; a detection limit of 10-9 M and a relative standard deviation (RSD) equal to 4.17% were obtained for ten repeated measurements in the concentration of 10-9 M. Hence, the Raman results indicate that the active SERS substrates, gold nanoparticles for the detection of BPA along with the developed methods, show promising results for SERS-based studies and can lead to the development of microsensors. In Raman spectroscopy, SERS active substrate coated with gold nanoparticles are of interest, which is larger than gold particles due to the resonance of the surface plasmons of gold nanoparticles and the scattering of light from gold particles since the Raman signal amplifies the molecular vibrations of BPA. By decreasing the concentration of BPA deposited on the active SERS substrates, the Raman signal is also weakened due to the reduction of molecular vibrations. By increasing the surface roughness of the active SERS substrates, the Raman signal can be enhanced due to increased light scattering from rough centers, which are the same as the larger particles created throughout the deposition by the spin-coat method, and as a result, they enhance the signal by increasing the scattering of light. Then, the molecular vibrations of BPA were identified in some consumer goods by SERS substrates as plasmonic sensors and Raman spectroscopy.

Raman scattering spectroscopy as a characterization method of coated conductors

  • Um, Y.M.;Jo, W.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.4
    • /
    • pp.24-27
    • /
    • 2007
  • The purpose of this work is to develop, integrate, and implement an optical characterization method to evaluate physical properties in coated conductors and investigate the local distribution of the causes of degraded performance. The method that we selected at this moment is Raman scattering spectroscopy, which is accompanied with measurements of local supercurrent transport, phase composition, microstructure, and epitaxy quality for coated conductors that range in size up to multi-meter-length tapes and that embrace the entire tape embodiment (substrate through cap layer). The establishment of Raman spectroscopy as an on-line process monitoring tool is our eventual goal of research, but it requires very robust and cost-effective equipments. We analyzed $YBa_2Cu_3O_7(YBCO)$ thin films grown at various substrate temperatures by using Raman spectroscopy. YBCO films were grown by a high-rate electron-beam co-evaporation method. Raman spectra of YBCO films with lower-transport properties exhibit additional phonon modes at ${\sim}300cm^{-1}$, ${\sim}600cm^{-1}$ and ${\sim}630cm^{-1}$, which are related to second-phases such as $Ba_2Cu_3O_{5.9}$ and $BaCuO_2$. We propose a new method to characterize Raman spectra of coated conductors for an in-line quality control.

Label-Free Molecular Imaging of Living Cells

  • Fujita, Katsumasa;Smith, Nicholas Isaac
    • Molecules and Cells
    • /
    • v.26 no.6
    • /
    • pp.530-535
    • /
    • 2008
  • Optical signals based on Raman scattering, coherent anti-Stokes Raman scattering (CARS), and harmonic generation can be used to image biological molecules in living cells without labeling. Both Raman scattering and CARS signals can be used to detect frequencies of molecular vibrations and to obtain the molecular distributions in samples. Second-harmonic optical signals can also be generated in structured arrays of noncentrosymmetric molecules and can be used to detect structured aggregates of proteins, such as, collagen, myosin and tubulin. Since labeling techniques using chemical and biological reactions may cause undesirable changes in the sample, label-free molecular imaging techniques are essential for observation of living samples.

Surface analysis using Raman spectroscopy during semiconductor processing (라만 분광법을 이용한 반도체 공정 중 표면 분석)

  • Tae Min Choi;JinUk Yoo;Eun Su Jung;Chae Yeon Lee;Hwa Rim Lee;Dong Hyun Kim;Sung Gyu Pyo
    • Journal of the Korean institute of surface engineering
    • /
    • v.57 no.2
    • /
    • pp.71-85
    • /
    • 2024
  • This article provides an overview of Raman spectroscopy and its practical applications for surface analysis of semiconductor processes including real-time monitoring. Raman spectroscopy is a technique that uses the inelastic scattering of light to provide information on molecular structure and vibrations. Since its inception in 1928, Raman spectroscopy has undergone continuous development, and with the advent of SERS(Surface Enhanced Raman Spectroscopy), TERS(Tip Enhanced Raman Spectroscopy), and confocal Raman spectroscopy, it has proven to be highly advantageous in nano-scale analysis due to its high resolution, high sensitivity, and non-destructive nature. In the field of semiconductor processing, Raman spectroscopy is particularly useful for substrate stress and interface characterization, quality analysis of thin films, elucidation of etching process mechanisms, and detection of residues.

Feasibility Study for Detection of Turnip yellow mosaic virus (TYMV) Infection of Chinese Cabbage Plants Using Raman Spectroscopy

  • Kim, Saetbyeol;Lee, Sanguk;Chi, Hee-Youn;Kim, Mi-Kyeong;Kim, Jeong-Soo;Lee, Su-Heon;Chung, Hoeil
    • The Plant Pathology Journal
    • /
    • v.29 no.1
    • /
    • pp.105-109
    • /
    • 2013
  • Raman spectroscopy provides many advantages compared to other common analytical techniques due to its ability of rapid and accurate identification of unknown specimens as well as simple sample preparation. Here, we described potential of Raman spectroscopic technique as an efficient and high throughput method to detect plants infected by economically important viruses. To enhance the detection sensitivity of Raman measurement, surface enhanced Raman scattering (SERS) was employed. Spectra of extracts from healthy and Turnip yellow mosaic virus (TYMV) infected Chinese cabbage leaves were collected by mixing with gold (Au) nanoparticles. Our result showed that TYMV infected plants could be discriminated from non-infected healthy plants, suggesting the current method described here would be an alternative potential tool to screen virus-infection of plants in fields although it needs more studies to generalize the technique.