• Title/Summary/Keyword: Renal nerve activity

Search Result 7, Processing Time 0.017 seconds

Natriuresis Induced by Intracerebroventricular Diazepam in Rabbits

  • Koh, Jeong-Tae;Kook, Young-Johng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.5
    • /
    • pp.555-563
    • /
    • 1998
  • The renal function is under regulatory influence of central nervous system (CNS), in which various neurotransmitter and neuromodulator systems take part. However, a possible role of central GABA-benzodiazepine system on the central regulation of renal function has not been explored. This study was undertaken to delineate the renal effects of diazepam. Diazepam, a benzodiazepine agonist, administered into a lateral ventricle (icv) of the rabbit brain in doses ranging from 10 to 100 ${\mu}g/kg,$ elicited dose-related diuresis and natriuresis along with improved renal hemodynamics. However, when given intravenously, 100 ${\mu}g/kg$ diazepam did not produce any significant changes in all parameters of renal function and systemic blood pressure. Diazepam, 100 ${\mu}g/kg$ icv, transiently decreased the renal nerve activity (RNA), which recovered after 3 min. The plasma level of atrial natriuretic peptide (ANP) increased 7-fold, the peak coinciding with the natriuresis and diuresis. Muscimol, a GABAergic agonist, 1.0 ${\mu}g/kg$ given icv, elicited marked antidiuresis and antinatriuresis, accompanied by decreases in systemic blood pressure and renal hemodynamics. When icv 0.3 ${\mu}g/kg$ muscimol was given 3 min prior to 30 ${\mu}g/kg$ of diazepam icv, urinary flow and Na excretion rates did not change significantly, while systemic hypotension was produced. These results indicate that icv diazepam may bring about natriuresis and diuresis by influencing the central regulation of renal function, and that the renal effects are related to the increased plasma ANP levels, not to the decreased renal nerve activity, and suggest that the effects may not be mediated by the activation of central GABAergic system.

  • PDF

Effects of Unilateral Renal Pedicle or Ureteral Occlusion on the Renal Function in the Rat (수뇨관 결찰이 신장에 미치는 영향)

  • Kim, Shin G.;Cho, Kyung W.
    • The Korean Journal of Physiology
    • /
    • v.19 no.2
    • /
    • pp.173-187
    • /
    • 1985
  • Renal compensatory adaptation caused by ablation of a part of renal mass has long been known in the field of the compensatory renal hypertrophy or hyperplasia. Many reports were found on the chronic mechanisms on the compensatory renal hyperfunction after exclusion of the contralateral kidney. However the mechanism(s) of the acute compensatory hyperfunction after contralateral exclusion has not yet been clarified. In the present experiment, we have tried to prove the possibility of the involvement of the renin-angiotensin system and/or prostaglandin system in the control mechanism of the acute compensatory renal hyperfunction after contralateral kidney exclusion. There were found different responses of the renal hyperfunction by contralateral renal pedicle or ureteral occlusion. Contralateral renal pedicle or ureteral occlusion caused a sustained increases of the urinary volume, sodium and potassium excretion, while the magnitude of the changes was different quantitatively by the maneuvers. Blood collection affected on the acute compensatory renal responses after ureteral as well as renal pedicle occlusion. Plasma prostaglandin $E_2$ level was not changed by the contralateral renal pedicle or ureteral occlusion. Urinary excretion of Prostaglandin $E_2$, the indices of renal prostaglandin biosynthesis, was not changed by the contralateral renal pedicle occlusion, but increased without significance by the contralateral ureteral occlusion. Acute renal compensatory responses after contralateral renal pedicle occlusion were blocked by the pretreatment of indomethacin. Plasma renin activity increased after contralateral ureteral occlusion, but the pattern of the increases was the same as in the time-control group. Plasma renin activity after contralateral renal pedicle occlusion did not change by the time sequence. SQ 20,881, an angiotensin I converting enzyme inhibitor, blunted the contralateral renal responses after the renal pedicle occlusion. Bilateral renal denervation abolished the contralateral renal responses after the renal pedicle occlusion. The above data suggest that there is no direct evidence to support the involvement of the renin-angiotensin system and/or prostaglandin system for the acute compensatory renal hyperfunction after contralateral kidney exclusion, and that the functional changes of the intact kidney may be caused by a humoral substances, or other mechanisms by afferent renal nerve activity originating from the treated kidney.

  • PDF

Influence of the Central Benzodiazepinergic System on Peripheral Cardiovascular Regulation

  • Koh, Jeong-Tae;Ju, Jeong-Min;Shin, Dong-Ho;Cho, Han-Ho;Choi, Bong-Kyu;Kim, Jae-Ha
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.3
    • /
    • pp.287-295
    • /
    • 1998
  • Diazepam is known to have cardiovascular depressive effects through a combined action on benzodiazepinergic receptor and the GABA receptor-chloride ion channel complex. Moreover, it is known that barbiturates also have some cardiovascular regulatory effects mediated by the central GABAergic system. Therefore, this study was undertaken to delineate the regulatory actions and interactions of these systems by measuring the responses of the cardiovascular system and renal nerve activity to muscimol, diazepam and pentobarbital, administered intracerebroventricularly in rabbits. When muscimol $(0.03{\sim}0.3\;{\mu}\;g/kg)$, diazepam $(10{\sim}100\;{\mu}\;g/kg)$ and pentobarbital $(1{\sim}10\;{\mu}\;g/kg)$ were injected into the lateral ventricle of the rabbit brain, there were similar dose-dependent decreases in blood pressure (BP) and renal nerve activity (RNA). The relative potency of the three drugs in decreasing BP and RNA was muscimol > pentobarbital > diazepam. Muscimol and pentobarbital also decreased the heart rate in a dose-dependent manner; however, diazepam produced a trivial, dose-independent decrease in heart rate. Diazepam $(30\;{\mu}g/kg)$ augmented the effect of muscimol $(0.1\;{\mu}g/kg)$ in decreasing blood pressure and renal nerve activity, but pentobarbital $(3\;{\mu}g/kg)$ did not. Bicuculline $(0.5\;{\mu}g/kg)$, a GABAergic receptor blocker, significantly attenuated the effect of muscimol in decreasing BP and RNA, either alone or with diazepam, and that of pentobarbital in decreasing BP and RNA, either alone or with muscimol. We inferred that the central benzodiazepinergic and barbiturate systems help regulate peripheral cardiovascular function by modulating the GABAergic system, which adjusts the output of the vasomotor center and hence controls peripheral sympathetic tone. Benzodiazepines more readily modulate the GABAergic system than barbiturates.

  • PDF

Mechanism of Central Antidiuretic Action Induced by TNPA, Dopamine $D_2$Receptor Agonist, in Dogs (Dopamine $D_2$Receptor 효능제인 TNPA의 중추적 항이뇨작용 기전)

  • 고석태;황명성
    • YAKHAK HOEJI
    • /
    • v.45 no.4
    • /
    • pp.397-406
    • /
    • 2001
  • It has been demonstrated previously that R(-)-2,10,11-trihydroxy-N-n-propylnora porphine (TNPA), a dopamine D$_2$receptor agonist, produced the antidiuresis through changes of central friction in dog. This study was investigated about effects of renal denervation and raclopride, a dopamine D$_2$receptor antagonist, on the antidiuresis of TNPA in order to elicidate the mechanism involved in this central antidiuresis induced by TNPA. Antidiresis exhibited by TNPA given into the vein or into carotid artery was not influenced by renal denervation, whereas antidiuresis of TNPA administered into carotid artery was blocked almost perfectly by raclopride pretreated into carotid artery. From these observations it is concluded that central antidiuresis induced by TNPA is brought about through activation of dopamine D$_2$receptor localized in brain, not related to renal nerve activity.

  • PDF

Marked Change in Parameter Level in Patient with Renal Disease

  • Bloh, Anmar Hameed;Obead, Dr. Antesar Rheem;Wahhab, Doaa Nassr
    • Journal of the Korean Chemical Society
    • /
    • v.66 no.2
    • /
    • pp.92-95
    • /
    • 2022
  • Failure Renal is the function of the kidneys to remove waste products and keep them on the periphery. and minerals for the body. Chronic renal failure is a syndrome characterized by a slow, irreversible deterioration of renal function due to the slow destruction of renal parenchyma. Calcium is one of the important minerals that the body contains in the blood and important tissues, and it has an important role in vital processes such as muscle contraction, nerve impulse conduction, the efficiency of heart muscle work, and blood clotting processes. The aim of the study is to study and compare calcium levels in men and women. It includes studying abnormal levels of calcium that cause many diseases, including chronic renal failure, and studying changes associated with renal failure. The method of this study was conducted on patients with chronic renal failure at Murjan Teaching Hospital in Babylon city during the period. The study included a sample of 70 patients (40 males, 30 females) with chronic renal failure, their ages ranged from 30-65, and 60 (30 males, 30 females) healthy without the disease of the same age. The result was a significant decrease in the number of red and white blood cells, hemoglobin concentration, hematocrit and platelets in patients with chronic renal failure, The result has been showed significant level in enzymes activity for transfer of amine group (alanine amino transferase, aspartate amino transferas) and phosphatase alkaline and also concentration of total bilirubin in patient with compare with healthy, Significantly increases, were found in the concentration of urea, uric acid and creatinine, as well as the concentration of calcium and phosphorous ions in the blood serum of patients compared to healthy controls.

Effects of Acupuncture at the Acupoint Yongok$(KI_2)$, Umgok$(KI_10)$, Sobu$(HT_8)$. Sohae$(HT_3)$ on Aquaporin-2 expression, RSNA, MAP, HR, serum ANP, renin and norepinephrine in Rats (족소음신경(足少陰腎經) 연곡(然谷).음곡(陰谷)과 수소음심경(手少陰心經) 소부(少府).소해(少海) 침자(鍼刺)가 신장(腎臟) Aquaporin-2 발현(發現)과 신교감신경활성(腎交感神經活性), 혈압(血壓) 및 혈청(血淸) ANP, renin, norepinephrine에 미치는 영향(影響))

  • Youn, Dae-Hwan;Park, Chna-Kyu;Kim, Jeong-Sang;Chae, Woo-Seok;Na, Chang-Su
    • Korean Journal of Acupuncture
    • /
    • v.21 no.1
    • /
    • pp.1-14
    • /
    • 2004
  • Objectives : This research was performed to investigate the effect of acupuncture at the $KI_2\;KI_{10}\;HT_8\;HT_3$, on Aquaporin-2(AQP2) expression related with the renal functions in rats. Methods : Acupuncture was performed during 100-seconds, 6-times, at 150-seconds intervals under anesthesia in rats. We observed rats' mean arterial pressure(MAP), heart rate(HR), renal sympathetic nerve activity(RSNA) during acupuncture and AQP2 expression by western blot method and atrial natriuretic peptide(ANP), renin, norepinephrine of plasma after decapitation. Results : The AQP2 expression was significantly increased in $HT_8$ group, but decreased in $KI_{10}$ group. Average MAP during 6-times acupuncture was significantly increased in $HT_8$ group. Average HR was significantly increased in $HT_8$ group, Average RSNA was increased in $KI_{10}$ group, but that was marginally increased in $KI_{10}$ group. Plasma renin concentration was increased in $KI_2,\;HT_3$, groups. Plasma ANP show a tendency to decrease in $KI_10\;HT_3$ groups, increased in $KI_2,\;HT_3$ but not significant. Plasma norepinephrine concentration was significantly decreased in $KI_{10},\;HT_3$ groups. Conclusions : These results suggested that acupuncture at $HT_8$ activate renal function to reuptake, but $KI_{10}$ show a decline on effect of AQP2 expression, blood pressure, nerve activity and renin.

  • PDF

Astragaloside IV Prevents Obesity-Associated Hypertension by Improving Pro-Inflammatory Reaction and Leptin Resistance

  • Jiang, Ping;Ma, Dufang;Wang, Xue;Wang, Yongcheng;Bi, Yuxin;Yang, Jinlong;Wang, Xuebing;Li, Xiao
    • Molecules and Cells
    • /
    • v.41 no.3
    • /
    • pp.244-255
    • /
    • 2018
  • Low-grade pro-inflammatory state and leptin resistance are important underlying mechanisms that contribute to obesity-associated hypertension. We tested the hypothesis that Astragaloside IV (As IV), known to counteract obesity and hypertension, could prevent obesity-associated hypertension by inhibiting pro-inflammatory reaction and leptin resistance. High-fat diet (HFD) induced obese rats were randomly assigned to three groups: the HFD control group (HF con group), As IV group, and the As IV + ${\alpha}$-bungaratoxin (${\alpha}-BGT$) group (As IV+${\alpha}-BGT$ group). As IV ($20mg{\cdot}Kg^{-1}{\cdot}d^{-1}$) was administrated to rats for 6 weeks via daily oral gavage. Body weight and blood pressure were continuously measured, and NE levels in the plasma and renal cortex was evaluated to reflect the sympathetic activity. The expressions of leptin receptor (LepRb) mRNA, phosphorylated signal transducer and activator of transcription-3 (p-STAT3), phosphorylated phosphatidylinositol 3-kinase (p-PI3K), suppressor of cytokine signaling 3 (SOCS3) mRNA, and protein-tyrosine phosphatase 1B (PTP1B) mRNA, pro-opiomelanocortin (POMC) mRNA and neuropeptide Y (NPY) mRNA were measured by Western blot or qRT-PCR to evaluate the hypothalamic leptin sensitivity. Additionally, we measured the protein or mRNA levels of ${\alpha}7nAChR$, inhibitor of nuclear factor ${\kappa}B$ kinase subunit ${\beta}/nuclear$ factor ${\kappa}B$ ($IKK{\beta}/NF-KB$) and pro-inflammatory cytokines ($IL-1{\beta}$ and $TNF-{\alpha}$) in hypothalamus and adipose tissue to reflect the anti-inflammatory effects of As IV through upregulating expression of ${\alpha}7nAChR$. We found that As IV prevented body weight gain and adipose accumulation, and also improved metabolic disorders in HFD rats. Furthermore, As IV decreased BP and HR, as well as NE levels in blood and renal tissue. In the hypothalamus, As IV alleviated leptin resistance as evidenced by the increased p-STAT3, LepRb mRNA and POMC mRNA, and decreased p-PI3K, SOCS3 mRNA, and PTP1B mRNA. The effects of As IV on leptin sensitivity were related in part to the up-regulated ${\alpha}7nAchR$ and suppressed $IKK{\beta}/NF-KB$ signaling and pro-inflammatory cytokines in the hypothalamus and adipose tissue, since co-administration of ${\alpha}7nAChR$ selective antagonist ${\alpha}-BGT$ could weaken the improved effect of As IV on central leptin resistance. Our study suggested that As IV could efficiently prevent obesityassociated hypertension through inhibiting inflammatory reaction and improving leptin resistance; furthermore, these effects of As IV was partly related to the increased ${\alpha}7nAchR$ expression.