• Title/Summary/Keyword: Repetitive firing

Search Result 11, Processing Time 0.018 seconds

Spontaneous Electrical Activity in Cerebellar Purkinje Neurons of Postnatal Rats

  • Nam, Sang-Chae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.4
    • /
    • pp.355-366
    • /
    • 1997
  • Although cerebellar Purkinje cells display spontaneous electrical activity in vivo and in slice experiments, the mechanism of the spontaneous activity generation has not been clearly understood. The aim of this study was to investigate whether cerebellar Purkinje cells of postnatal rats generate spontaneous electrical activity without synaptic inputs. Dissociated cerebellar Purkinje cells were used for reducing synaptic inputs in the present study. Cerebellar Purkinje cells with dendrites were dissociated from postnatal rats using enzymatic treatment followed by mechanical trituration. Spontaneous electrical activities were recorded from dissociated cells without any stimulus using whole-cell patch clamp configuration. Two types, spontaneously firing or quiescent, of dissociated Purkinje cells were observed in postnatal rats. Both types of cells were identified as Purkinje cells using immunocytochemical staining technique with anti-calbindin after recording. Spontaneously active cells displayed two patterns of firing, repetitive and burst firings. Two thirds of dissociated Purkinje cells displayed repetitive firing and the rest of them did burst firing under same recording condition. Repetitive firing activities were maintained even after further isolation using either physical or pharmacological techniques. Neither high magnessium solution nor excitatory synaptic blockers, AP-5 and DNQX, block the spontaneous activity. These results demonstrate that spontaneous electrical activity of isolated cerebellar Purkinje cells in postnatal rats is generated by intrinsic membrane properties rather than synaptic inputs.

  • PDF

The effects of repetitive firing processes on the optical, thermal, and phase formation changes of zirconia

  • Ozdogan, Alper;Ozdemir, Hatice
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.1
    • /
    • pp.9-14
    • /
    • 2020
  • PURPOSE. The aim of this study was to investigate the effect of different numbers of heat treatments applied to superstructure porcelain on optical, thermal, and phase formation properties of zirconia. MATERIALS AND METHODS. Forty zirconia specimens were prepared in the form of rectangular prism. Specimens were divided into four groups (n = 10) according to the number of firing at heating values of porcelain. Color differences and translucency parameter were measured, and X-ray diffraction (XRD) analysis and differential scanning calorimetry (DSC) were performed. Data were analyzed with analysis of variance (ANOVA). RESULTS. There were no statistically significant differences in ∆E, TP, L, a, and b value changes of the zirconia specimens as a result of repetitive firing processes (P>.05). CONCLUSION. Although additional firing processes up to 4 increase peak density in thermal analysis, additional firing processes up to 4 times can be applied safely as they do not result in a change in color and phase character of zircon frameworks.

Effect of repetitive firing on passive fit of metal substructure produced by the laser sintering in implant-supported fixed prosthesis

  • Altintas, Musa Aykut;Akin, Hakan
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.3
    • /
    • pp.167-172
    • /
    • 2020
  • PURPOSE. The aim of the present study was to investigate the passive fit of metal substructure after repetitive firing processes in implant-supposed prosthesis. MATERIALS AND METHODS. Five implants (4 mm diameter and 10 mm length) were placed into the resin-based mandibular model and 1-piece of screw-retained metal substructure was produced with the direct metal laser sintering (DMSL) method using Co-Cr compound (n = 10). The distance between the marked points on the multiunit supports and the marginal end of the substructure was measured using a scanning electron microscope (SEM) at each stage (metal, opaque, dentin, and glaze). 15 measurements were taken from each prosthesis, and 150 measurements from 10 samples were obtained. In total, 600 measurements were carried out at 4 stages. One-way ANOVA test was used for statistical evaluation of the data. RESULTS. When the obtained marginal range values were examined, differences between groups were found to be statistically significant (P<.001). The lowest values were found in the metal stage (172.4 ± 76.5 ㎛) and the highest values (238.03 ± 118.92 ㎛) were determined after glaze application. When the interval values for groups are compared with pairs, the differences between metal with dentin, metal with glaze, opaque with dentin, opaque with glaze, and dentin with glaze were found to be significant (P<.05), whereas the difference between opaque with metal was found to be insignificant (P=.992). CONCLUSION. Passive fit of 1-piece designed implant-retained fixed prosthesis that is supported by multiple implants is negatively affected by repetitive firing processes.

Induction of Oscillatory Firing Activity by TTX in Rat Cerebellar Purkinje Cells

  • Seo, Wha-Sook
    • The Korean Journal of Physiology
    • /
    • v.29 no.1
    • /
    • pp.103-111
    • /
    • 1995
  • Intracellular recordings were obtained from Purkinje cells in rat cerebellar slices maintained in vitro. Adding tetrodotoxin to the superfusion solution produced a typical pattern of repetitive burst firing consisting of a cluster of action potentials followed by a long hyperpolarization. TTX-induced oscillatory activity was not due to modulation of membrane potential although underlying mechanisms for maintenance of oscillatory activity were influenced by membrane voltage. The mechanism of TTX-induced oscillation was not related to the presence or amplitude of $I_h$ and could still induce the oscillatory activity after blockade of $I_h$ by cesium. The result from an experiment in which QX-314 was injected intracellularly strongly suggested that TTX-induced oscillatory firing activity was due to blockade of post-synaptic $Na^{+}$ currents intrinsic to PCs.

  • PDF

Hardness and microstructural changes by cooling rate and holding time during porcelain firing of a multi-purpose dental gold alloy (다목적용 치과용 금합금의 소성 시 냉각속도와 계류시간에 따른 경도와 미세구조의 변화)

  • Cho, Mi-Hyang
    • Journal of Technologic Dentistry
    • /
    • v.33 no.4
    • /
    • pp.271-281
    • /
    • 2011
  • Purpose: The aim of this study is to investigate the changes in hardness and microstructure of a dental multipurpose alloy after simulated complete firing with controlled cooling rate and holding time by characterizing the changes in hardness and microstructure after simulated firing with various cooling rates and holding times. Methods: Before hardness testing, the specimens were solution treated and then were rapidly quenched into ice brine. The specimens were completely fired in furnace. Hardness measurements were made using a Vickers microhardness tester. The specimens were examined at 15 kV using a field emission scanning electron microscope. Results: The maximum hardness value was obtained at stage 0 after simulated firing with various cooling rates (quick cooling, stage 0, stage 1, stage 2, stage 3). By the repetitive firing, the hardness of the tested alloy decreased gradually. By holding the specimen at $500^{\circ}C$ for 10-20min after simulated firing, the hardness increased apparently. However, to hold the alloy for long periods of time in the relatively high temperature after simulated firing resulted in the formation of thick oxidation layer. The oxide film formed on the surface of the alloy after simulated complete firing with controlled cooling rate, which was mainly composed of O and Zn. Conclusion: It is reasonable to hold the alloy at $500^{\circ}C$ for 10-20min after complete firing in other to improve the final hardness of the alloy.

Case Study on the Firing Pin Fatigue Destruction of the Korean Rifle by Repeated Impact (반복충격에 의한 한국형 소총의 공이 피로파괴 사례 연구)

  • Lee, Ho-Jun;Choi, Si-Young;Shin, Tae-Sung;Seo, Hyun-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.648-655
    • /
    • 2020
  • The firing pin of modern automatic rifles detonates the primer of loaded ammunition via a hammer. During this process, the firing pin receives an impact load and repetitive force throughout the life of the rifle. An endurance test of a rifle showed that the firing pin breaks prematurely at 96.26% of life. Accordingly, a case study was conducted through cause analysis and a reconstruction test. Optical microscopy and scanning electron microscopy of the broken surface of the firing pin showed that a crack began in the circumferential direction of the surface, resulting in a fatigue crack to the core after repeated impact. Crack growth and fatigue destruction occurred at the end due to the repetitive impact and was estimated using a notch. For verification, a sample that produced a 0.03mm circumferential notch was broken at 64.25% of life in the reconstruction test. A test of breakage according to the notch types showed that a 0.3mm and a 0.5mm one-side notch were broken at 66.53% and 50.76%, respectively, and a 0.03mm six-point notch was broken at 85.65%. The endurance life of a sample firing pin with a rough surface and tool mark was examined, but an approximately 381 ㎛ internal crack formed. Through this study, failure for each notch type was considered. These results show that quality control of the notch and surface roughness is essential for ensuring the reliability of a component subjected to repeated impact.

Echinacoside, an active constituent of Herba Cistanche, suppresses epileptiform activity in hippocampal CA3 pyramidal neurons

  • Lu, Cheng-Wei;Huang, Shu-Kuei;Lin, Tzu-Yu;Wang, Su-Jane
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.3
    • /
    • pp.249-255
    • /
    • 2018
  • Echinacoside, an active compound in the herb Herba Cistanche, has been reported to inhibit glutamate release. In this study, we investigated the effects of echinacoside on spontaneous excitatory synaptic transmission changes induced by 4-aminopyridine (4-AP), by using the in vitro rat hippocampal slice technique and whole-cell patch clamp recordings from CA3 pyramidal neurons. Perfusion with echinacoside significantly suppressed the 4-AP-induced epileptiform activity in a concentration-dependent manner. Echinacoside reduced 4-AP-induced increase in frequency of spontaneous excitatory postsynaptic currents (sEPSCs) but it did not affect the amplitude of sEPSCs or glutamate-activated currents, implicating a presynaptic mechanism of action. Echinacoside also potently blocked sustained repetitive firing, which is a basic mechanism of antiepileptic drugs. These results suggest that echinacoside exerts an antiepileptic effect on hippocampal CA3 pyramidal neurons by simultaneously decreasing glutamate release and blocking abnormal firing synchronization. Accordingly, our study provides experimental evidence that echinacoside may represent an effective pharmacological agent for treating epilepsy.

Antidepressant drug paroxetine blocks the open pore of Kv3.1 potassium channel

  • Lee, Hyang Mi;Chai, Ok Hee;Hahn, Sang June;Choi, Bok Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.1
    • /
    • pp.71-80
    • /
    • 2018
  • In patients with epilepsy, depression is a common comorbidity but difficult to be treated because many antidepressants cause pro-convulsive effects. Thus, it is important to identify the risk of seizures associated with antidepressants. To determine whether paroxetine, a very potent selective serotonin reuptake inhibitor (SSRI), interacts with ion channels that modulate neuronal excitability, we examined the effects of paroxetine on Kv3.1 potassium channels, which contribute to high-frequency firing of interneurons, using the whole-cell patch-clamp technique. Kv3.1 channels were cloned from rat neurons and expressed in Chinese hamster ovary cells. Paroxetine reversibly reduced the amplitude of Kv3.1 current, with an $IC_{50}$ value of $9.43{\mu}M$ and a Hill coefficient of 1.43, and also accelerated the decay of Kv3.1 current. The paroxetine-induced inhibition of Kv3.1 channels was voltage-dependent even when the channels were fully open. The binding ($k_{+1}$) and unbinding ($k_{-1}$) rate constants for the paroxetine effect were $4.5{\mu}M^{-1}s^{-1}$ and $35.8s^{-1}$, respectively, yielding a calculated $K_D$ value of $7.9{\mu}M$. The analyses of Kv3.1 tail current indicated that paroxetine did not affect ion selectivity and slowed its deactivation time course, resulting in a tail crossover phenomenon. Paroxetine inhibited Kv3.1 channels in a use-dependent manner. Taken together, these results suggest that paroxetine blocks the open state of Kv3.1 channels. Given the role of Kv3.1 in fast spiking of interneurons, our data imply that the blockade of Kv3.1 by paroxetine might elevate epileptic activity of neural networks by interfering with repetitive firing of inhibitory neurons.

Cordycepin protects against β-amyloid and ibotenic acid-induced hippocampal CA1 pyramidal neuronal hyperactivity

  • Yao, Li-Hua;Wang, Jinxiu;Liu, Chao;Wei, Shanshan;Li, Guoyin;Wang, Songhua;Meng, Wei;Liu, Zhi-Bin;Huang, Li-Ping
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.6
    • /
    • pp.483-491
    • /
    • 2019
  • Cordycepin exerts neuroprotective effects against excitotoxic neuronal death. However, its direct electrophysiological evidence in Alzheimer's disease (AD) remains unclear. This study aimed to explore the electrophysiological mechanisms underlying the protective effect of cordycepin against the excitotoxic neuronal insult in AD using whole-cell patch clamp techniques. ${\beta}$-Amyloid ($A{\beta}$) and ibotenic acid (IBO)-induced injury model in cultured hippocampal neurons was used for the purpose. The results revealed that cordycepin significantly delayed $A{\beta}$ + IBO-induced excessive neuronal membrane depolarization. It increased the onset time/latency, extended the duration, and reduced the slope in both slow and rapid depolarization. Additionally, cordycepin reversed the neuronal hyperactivity in $A{\beta}$ + IBO-induced evoked action potential (AP) firing, including increase in repetitive firing frequency, shortening of evoked AP latency, decrease in the amplitude of fast afterhyperpolarization, and increase in membrane depolarization. Further, the suppressive effect of cordycepin against $A{\beta}$ + IBO-induced excessive neuronal membrane depolarization and neuronal hyperactivity was blocked by DPCPX (8-cyclopentyl-1,3-dipropylxanthine, an adenosine $A_1$ receptor-specific blocker). Collectively, these results revealed the suppressive effect of cordycepin against the $A{\beta}$ + IBO-induced excitotoxic neuronal insult by attenuating excessive neuronal activity and membrane depolarization, and the mechanism through the activation of $A_1R$ is strongly recommended, thus highlighting the therapeutic potential of cordycepin in AD.

Electrically-evoked Neural Activities of rd1 Mice Retinal Ganglion Cells by Repetitive Pulse Stimulation

  • Ryu, Sang-Baek;Ye, Jang-Hee;Lee, Jong-Seung;Goo, Yong-Sook;Kim, Chi-Hyun;Kim, Kyung-Hwan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.6
    • /
    • pp.443-448
    • /
    • 2009
  • For successful visual perception by visual prosthesis using electrical stimulation, it is essential to develop an effective stimulation strategy based on understanding of retinal ganglion cell (RGC) responses to electrical stimulation. We studied RGC responses to repetitive electrical stimulation pulses to develop a stimulation strategy using stimulation pulse frequency modulation. Retinal patches of photoreceptor-degenerated retinas from rd1 mice were attached to a planar multi-electrode array (MEA) and RGC spike trains responding to electrical stimulation pulse trains with various pulse frequencies were observed. RGC responses were strongly dependent on inter-pulse interval when it was varied from 500 to 10 ms. Although the evoked spikes were suppressed with increasing pulse rate, the number of evoked spikes were >60% of the maximal responses when the inter-pulse intervals exceeded 100 ms. Based on this, we investigated the modulation of evoked RGC firing rates while increasing the pulse frequency from 1 to 10 pulses per second (or Hz) to deduce the optimal pulse frequency range for modulation of RGC response strength. RGC response strength monotonically and linearly increased within the stimulation frequency of 1~9 Hz. The results suggest that the evoked neural activities of RGCs in degenerated retina can be reliably controlled by pulse frequency modulation, and may be used as a stimulation strategy for visual neural prosthesis.