• Title/Summary/Keyword: Roots of Adenophora triphylla var. japonica extract

Search Result 3, Processing Time 0.022 seconds

Roots Extract of Adenophora triphylla var. japonica Inhibits Adipogenesis in 3T3-L1 Cells through the Downregulation of IRS1

  • Kim, Hae Lim;Lee, Hae Jin;Choi, Bong-Keun;Park, Sung-Bum;Woo, Sung Min;Lee, Dong-Ryung
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.34 no.3
    • /
    • pp.136-141
    • /
    • 2020
  • The purpose of this study was to investigate the action mechanism of the roots of Adenophora triphylla var. japonica extract (ATE) in 3T3-L1 adipocytes. Cell toxicity test by MTT assay and lipid accumulation was performed to evaluate the inhibitory effect on the differentiation of adipocyte from preadipocytes induced by MDI differentiation medium, while adipogenesis related proteins expression level were evaluated by western blotting. As a result, ATE inhibited MDI-induced adipocyte differentiation in 3T3-L1 cells dose-dependently without cytotoxicity. Our results showed that ATE inhibited the phosphorylation of IRS1, thereby decreasing the expression of PI3K110α and reducing the phosphorylation of AKT and mTOR, resulting in attenuated protein expression of C/EBPα, PPARγ, ap2 and FAS in 3T3-L1 cells. These results suggest anti-adipogenic functions for ATE, and identified IRS1 as a novel target for ATE in adipogenesis.

Antioxidant and anticancer activities of Adenophora triphylla leaf and root extracts (새싹 잔대 잎과 뿌리의 항산화 및 항암 효과)

  • Seon Young Yoon;Ki Hyun Kim;Tae Kyung Hyun
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.137-141
    • /
    • 2023
  • The root of Adenophora triphylla is a highly valued medicinal resource that is used to prevent human obesity, cancer, and inflammation, whereas young leaves or sprouts of A. triphylla are used as food ingredients. In this study, we compared the antioxidant and anticancer activities of 70% ethanol extracts of A. triphylla roots and leaves. The leaf extract exhibited stronger 2,2-diphenyl-1-picrylhydrazyl (DPPH)-radical scavenging activity, reducing power, and oxygen radical absorbance capacity (ORAC) than the root extract. Furthermore, the leaf extract was observed to be a potent source of anticancer compounds that were effective against A549 (lung cancer), LNcaP (prostate cancer), SKOV3 (ovarian cancer), and Caco-2 (colorectal cancer) cells. These results indicate that not only the roots but also the leaves of A. triphylla can serve as valuable sources of functional materials in the pharmaceutical industry.

Anti-Inflammatory and Anti-Allergic Effects of Adenophora triphylla var. japonica Extract (잔대 추출물의 항염 및 항천식 효과)

  • Jang, Hwan Hee;Kim, Mi Ju;Cho, Su Yeon;Kim, Jung Bong;Lee, Sung Hyeon;Lee, Young Min
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.25 no.5
    • /
    • pp.813-821
    • /
    • 2015
  • Asthma is an increasing global health problem, and novel strategies to prevent or ameliorate the condition are needed. The purpose of the present study was to evaluate the anti-inflammatory and anti-asthma effects of Adenophora triphylla var. japonica extracts. We investigated the molecular mechanism underlying the effects of 80% ethanol extracts (AE) of A. triphylla on lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. AE treatment inhibited pro-inflammatory cytokines such as TNF-${\alpha}$ and IL-6 as well as nitric oxide (NO) production in LPS-stimulated RAW 264.7 cells. In particular, NO and pro-inflammatory cytokine production was suppressed more effectively by aerial parts (AE-A) than roots (AE-R) of A. triphylla. Quantitative RT-PCR assay showed that AE reduced mRNA levels of iNOS and COX-2. We also evaluated the anti-asthmatic effects of AE-A in an ovalbumin (OVA)-induced BALB/c mouse model. AE-A supplementation significantly reduced the amounts of airway eosinophils, IL-4 and IL-13 levels in BALF, and IgE levels in serum as compared with untreated, OVA-induced mice. These results suggest that AE-A can be considered as a therapeutic agent to potentially relieve asthma.