• Title/Summary/Keyword: Rumen Protozoa

Search Result 100, Processing Time 0.017 seconds

The Role of Protozoa in Feed Digestion - Review -

  • Jouany, J.P.;Ushida, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.1
    • /
    • pp.113-128
    • /
    • 1999
  • Protozoa can represent as half of the total rumen microbial biomass. Around 10 genera are generally present on the same time in the rumen. Based on nutritional aspects they can be divided in large entodiniomorphs, small entodiniomorphs and isotrichs. Their feeding behaviour and their enzymatic activities differ considerably. Many comparisons between defaunated and refaunated animals were carried out during the last two decades to explain the global role of protozoa at the ruminal or animal levels. It is now generally considered that a presence of an abundant protozoal population in the rumen has a negative effect on the amino acid (AA) supply to ruminants and contribute to generate more methane but, nevertheless, protozoa must not be considered as parasites. They are useful for numerous reasons. They stabilise rumen pH when animal are fed diets rich in available starch and decrease the redox potential of rumen digesta. Because cellulolytic bacteria are very sensitive to these two parameters, protozoa indirectly stimulate the bacterial cellulolytic activity and supply their own activity to the rumen microbial ecosystem. They could also supply some peptides in the rumen medium which can stimulate the growth of the rumen microbiota, but this aspect has never been considered in the past. Their high contribution to ammonia production has bad consequences on the urinary nitrogen excretion but means also that less dietary soluble nitrogen is necessary when protozoa are present. Changes in the molar percentages of VFA and gases from rumen fermentations are not so large that they could alter significantly the use of energy by animals. The answer of animals to elimination of protozoa (defaunation) depends on the balance between energy and protein needs of animals and the supply of nutrients supplied through the diet. Defaunation is useful in case of diets short in protein nitrogen but not limited in energy supply for animals having high needs of proteins.

Utilization of Ruminal Epithelial Cells by Ruminococcus albus, with or without Rumen Protozoa, and Its Effect on Bacterial Growth

  • Goto, M.;Karita, S.;Yahaya, M.S.;Kim, W.;Nakayama, E.;Yamada, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.1
    • /
    • pp.44-49
    • /
    • 2003
  • Effects of supplementation with ruminal epithelial cells on fiber-degrading activity and cell growth of Ruminococcus albus (R. albus, strain 7) was tested using a basal substrate of rice straw and formulated concentrate. Cultures of R. albus alone and R. albus with rumen protozoa were grown at $39^{\circ}C$ for 48 h with an 8.4% crude protein (CP) substrate, 33% of the CP supplemented with either ruminal epithelial cells or defatted soybean meal. The ruminal epithelial cells had lower amounts of rumen soluble and degradable protein fractions as compared to defatted soybean meal, as determined by an enzymatic method, and the same was found with amino acid composition of protein hydrolysates. Ruminal epithelial cells were directly utilized by the R. albus, and resulted in greater growth of cell-wall free bacteria compared to defatted soybean meal. The effect of epithelial cells on bacterial growth was enhanced by the presence of rumen protozoa. In consistency with cultures of R. albus and R. albus with rumen protozoa, fermentative parameters such as dry matter degradability and total volatile fatty acid did not differ between supplementation with ruminal epithelial cells or defatted soybean meal.

DEGRADATION OF NUCLEIC ACIDS BY CELL-FREE EXTRACT OF MIXED RUMEN PROTOZOA OF BUFFALO RUMEN

  • Sinha, P.R.;Dutta, S.M..
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.1 no.4
    • /
    • pp.219-222
    • /
    • 1988
  • Degradation of deoxyribonucleic acid(DNA) and ribonucleic acid(RNA) by cell-free extract of mixed rumen protozoa of buffalo rumen was investigated. DNA was observed to be degraded rapidly during an initial incubation period of 2 hr with simultaneous appearance of degradation products. RNA on the other hand recorded a rapid degradation during an initial incubation period of 1 hr. RNA degradation products appeared upto an incubation period of 2 hr. DNA was observed to degrade into oligo- and mononucleotides. pyrimidine nucleosides, purine nucleoside adenosine and bases xanthine, hypoxanthine and thymine. Degradation products of RNA comprised of pyrimidine nucleosides, purine nucleoside, adenosine and bases xanthine, hypoxanthine and uracil besides oligo- and mononucleotides.

Studies on Microorganisms in Rumen of Ruminants - 2. Basic Studies on Ciliate Protozoa in Rumen of Korean Native Goats (반추동물의 제일위내 미생물에 관한 연구 - 제2보 한국재래산양의 제일위내 섬모충에 관한 기초연구)

  • Lee Ho-Il
    • Journal of the korean veterinary medical association
    • /
    • v.15 no.8
    • /
    • pp.459-461
    • /
    • 1979
  • In order to investigate the population of rumen ciliate protozoa and pH of rumen contents of Korean native goat, 20 goats, slaughtered at Jeonju private abattoir, were selected from Februry to April 1979. The results obtained in this work were summarized

  • PDF

Influence of Controlling Protozoa on the Degradation and Utilization of Dietary Fibre and Protein in the Rumen and Nitrogenous Flow Entering the Duodenum of Sheep

  • Han, C.Y.;Lu, D.X.;Hu, M.;Tan, Z.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.8
    • /
    • pp.1241-1245
    • /
    • 1999
  • Nine two-year old sheep fitted with rumen and duodenum cannulas were used to study the effect of controlling protozoa flora on the degradation and utilization of dietary fibre and protein in the rumen and on nitrogenous flow to the duodenum. There were three groups in this experiment: defaunation (DF); partial defaunation (PDF); faunation (F) as control. Results showed that: 1,There were no differences between treatments in dietary DM degradation in the rumen, but defaunation and partial defaunation increased the quantity of nitrogenous material in the rumen and the flow of N to duodenum. 2, partial defaunation and defaunation improved the degradabilities of dietary NDF, ADF and HC, but there were no differences between the defaunated and partially defaunated groups. 3, Partial defaunation decreased the degradability of dietary protein in the rumen. There was no difference between defaunated and faunated groups. 4, Defaunation and partial defaunation increased the quantity of total N (TN) and microbial N (MCN) in the rumen and the amounts entering the duodenum. The protozoa N (PN) flow in the faunated group was higher than that in the partially defaunated group, and the amino acid pattern in the digesta at the proximal duodenum in the defaunated group was closer to the ideal amino acid pattern. 5, There were differences in the mole percent of acetic, propionic, total-VFAs and the non-glucogenic to glucogenic VFAs ratio (NGR) value in the rumen fluids. The order was as follows: mole percent of acetate: F>PDF>DF; mole percent of propionate: DF>PDF>F; total-VFAs: PDF>F>DF; NGR: F>PDF>DF.

Effect of Fungal Elimination on Bacteria and Protozoa Populations and Degradation of Straw Dry Matter in the Rumen of Sheep and Goats

  • Li, D.B.;Hou, X.Z.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.1
    • /
    • pp.70-74
    • /
    • 2007
  • An in vitro study was carried out to investigate the differences in rumen microbes and fiber degradation capacity between sheep and goats. Three local male sheep and three Inner Mongolia male cashmere goats (aged 1.5 to 2 years; weight 25.0 to 32.0 kg) were each fitted with a permanent rumen cannula used to provide rumen fluid. Cycloheximide was used to eliminate rumen anaerobic fungi. The results showed that the quantities of fungal zoospores in the culture fluid of the control group were significantly greater in the sheep than in the goats; however, bacteria and protozoa counts were significantly higher in goats than in sheep. The digestibility of straw dry matter did not differ significantly between the two species before elimination of fungi, but tended to be higher for sheep (55.4%) than for goats (53.3%). The results also indicated that bacteria counts increased significantly after elimination of anaerobic fungi; however, the digestibility of straw dry matter significantly decreased by 12.1% and 8.6% for sheep and goats respectively. This indicated that the anaerobic fungi of the rumen played an important role in degradation of fiber.

Practical Application of Defaunation of Cattle on Farms in Vietnam: Response of Young Cattle Fed Rice Straw and Grass to a Single Drench of Groundnut Oil

  • Nguyen, Thi Hong Nhan;Nguyen, Van Hon;Nguyen, Trong Ngu;Nguyen, Tien Von;Preston, T.R.;Leng, R.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.4
    • /
    • pp.485-490
    • /
    • 2001
  • Farmers in the centre of Vietnam have a tradition of dosing young cattle with groundnut oil before fattening them on a diet of rice straw and road-side grass. These farmers claim the cattle grow faster. It was hypothesized that the effect of the oil could be to eliminate the protozoa from the rumen. This is known to increase the net microbial growth efficiency in the rumen and increase the protein supply to the animal. To test this hypothesis, two experiments were undertaken; one on-station with four cattle fitted with rumen cannulae and the second a growth trial with 25 young cattle in smallholder farms. When the cannulated animals were drenched with groundnut oil, the protozoa were eliminated from the rumen and animals could be kept free of protozoa by isolation. The ammonia concentration in the rumen fluid was decreased when the protozoa were eliminated and there was an indication of improved rumen dry matter degradability of the forage components of the diet. In the practical condition on the smallholder farms, the growth rates of cattle drenched with groundnut oil were increased considerably (65%) compared with untreated control animals. The laboratory results when taken together with the on-farm results indicate that these resource-poor farmers had been able to defaunate their cattle and to maintain the fauna-free state by isolation of their animals from extraneous stock. This traditional practice in Central Vietnam, whereby one family keeps only one or two animals that are hand fed and tethered, has quite a large potential for all of those countries where animals are fed agro-industrial by-products, as it is highly economic. The use of 1 litre of oil compared with 1 kg of rice polishing per day (300 kg over 300 days), would be highly profitable in all countries of South-East Asia.

Rumen Manipulation to Improve Animal Productivity

  • Santra, A.;Karim, S.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.5
    • /
    • pp.748-763
    • /
    • 2003
  • Anaerobic rumen microorganisms mainly bacteria, protozoa and fungi degrade ligno-cellulosic feeds consumed by the ruminants. The ruminants in developing countries are predominantly maintained on low grade roughage and grazing on degraded range land resulting in their poor nutrient utilization and productivity. Hence, manipulation of rumen fermentation was tried during last two decades to optimize ruminal fermentation for improving nutrient utilization and productivity of the animals. Modification of rumen microbial composition and their activity was attempted by using chemical additives those selectively effect rumen microbes, introduction of naturally occurring or genetically modified foreign microbes into the rumen and genetically manipulation of existing microbes in the rumen ecosystem. Accordingly, rumen protozoa were eliminated by defaunation for reducing ruminal methane production and increasing protein outflow in the intestine, resulting in improve growth and feed conversion efficiency of the animals. Further, Interspecies trans-inoculation of rumen microbes was also successfully used for annulment of dietary toxic factor. Additionally, probiotics of bacterial and yeast origin have been used in animal feeding to stabilize rumen fermentation, reduced incidence of diarrhoea and thus improving growth and feed conversion efficiency of young stalk. It is envisaged that genetic manipulation of rumen microorganisms has enormous research potential in developing countries. In view of feed resource availability more emphasis has to be given for manipulating rumen fermentation to increase cellulolytic activity for efficient utilization of low grade roughage.