• Title/Summary/Keyword: SOD1

Search Result 2,045, Processing Time 0.03 seconds

The Study of Superoxide dismutase (SOD) and SOD-mimic Compounds in Panax ginseng C.A.Meyer

  • / U
    • Korean Journal of Plant Resources
    • /
    • v.10 no.2
    • /
    • pp.188-193
    • /
    • 1997
  • Panax ginseng C.A.Meyer,1 to 5 years old were electrophored and were stained for SOD activity. The result indicated a total of 13 distinct form of the enzyme and the pattern of achromatic bands were not different according to ages. Nine of the enzyme activities were eliminated with cyanide or peroxide treatment and were resistant to treatment of chloroform plus ethanol. It suggested that they may be cupro-zinc containing SOD, whereas four were cyanide or peroxide resistant and were eliminated with cholroform plus ethanol treatment. They may be manganese containing SOD. Ginseng roos. 1 to 5 years old were analyzed for their SOD measurement of SOD activities of all extracts, the significant difference of SOD activities were not shown according to ages. All ginseng extracts had the total SOD activities of all extracts, the significant difference of SOD activities were not shown according to ages. All ginseng extracts had the total SOD activities of about 700-800 unit/g of fresh weight. Therefore, the SOD activities from SOD-mimic compounds were higher than one from SOD. The ratio between the SOD activity from SOD-mimic compounds and one from true SOD was approximately 2:1 to 3:1.

  • PDF

Molecular Cloning and Expression of Sequence Variants of Manganese Superoxide Dismutase Genes from Wheat

  • Baek, Kwang-Hyun;Skinner, Daniel Z.
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.1
    • /
    • pp.77-85
    • /
    • 2010
  • Reactive oxygen species (ROS) are very harmful to living organisms due to the potential oxidation of membrane lipids, DNA, proteins, and carbohydrates. transformed E.coli strain QC 871, superoxide dismutase (SOD) double-mutant, with three sequence variant MnSOD1, MnSOD2, and MnSOD3 manganese superoxide dismutase (MnSOD) gene isolated from wheat. Although all QC 871 transformants grown at $37^{\circ}C$ expressed mRNA of MnSOD variants, only MnSOD2 transformant had functional SOD activity. MnSOD3 expressed active protein when grown at $22^{\circ}C$, however, MnSOD1 did not express functional protein at any growing and induction conditions. The sequence comparison of the wheat MnSOD variants revealed that the only amino acid difference between the sequence MnSOD2 and sequences MnSOD1 and 3 is phenylalanine/serine at position 58 amino acid. We made MnSOD2S58F gene, which was made by altering the phenylalaine to serine at position 58 in MnSOD2. The expressed MnSOD2S58F protein had functional SOD activity, even at higher levels than the original MnSOD2 at all observed temperatures. These data suggest that amino acid variation can result in highly active forms of MnSOD and the MnSOD2S58F gene can be an ideal target used for transforming crops to increase tolerance to environmental stresses.

Expression of Human SOD1 and Mutant SOD1 (G93A) in E. coli and Identification of SOD1 as a Substrate of HtrA2 Serine Protease (대장균에서의 human SOD1과 mutant SOD1 (G93A) 단백질의 발현과 HtrA2의 기질 여부 확인에 관한 연구)

  • Kim, Goo-Young;Kim, Sang-Soo;Park, Hyo-Jin;Rhim, Hyang-Shuk
    • Journal of Life Science
    • /
    • v.16 no.5
    • /
    • pp.716-722
    • /
    • 2006
  • Superoxide dismutase (SOD) is physiologically important in regulating cellular homeostasis and apoptotic cell death, and its mutations are the cause of familial amyotrophic lateral sclerosis (FALS). Mitochondrial serine protease HtrA2 has a pro-apoptotic function and has known to be associated with neurodegenerative disorders. To investigate the relationship between genes associated with apoptotic cell death, such as HtrA2 and SOD1, we utilized the pGEX expression system to develop a simple and rapid method for purifying wild-type and ALS-associated mutant SOD1 proteins in a suitable form for biochemical studies. We purified SOD1 and SOD1 (G93A) proteins to approximately 90% purity with relatively high yields (3 mg per liter of culture). Consistent with the result in mammalian cells, SOD1 (G93A) was more insoluble than wild-type SOD1 in E. coli, indicating that research on the aggregate formation of SOD1 may be possible using this pGEX expression system in E. coli. We investigated the HtrA2 serine protease activity on SOD1 to assess the relationship between two proteins. Not only wild-type SOD1 but also ALS-associated mutant SOD1 (G93A) were cleaved by HtrA2, resulting in the production of the 19 kDa and 21 kDa fragments that were specific for anti-SOD1 antibody. Using protein gel electrophoresis and immunoblot assay, we compared the relative molecular masses of thrombin-cleaved GST-SOD1 and HtrA2-cleaved SOD1 fragments and can predict that the HtrA2-cleavage sites within SOD1 are the peptide bonds between leucine 9-lysine 10 (L9-K10) and glutamine 23-lysine 24 (Q23-K24). Our study indicates that SOD1 is one of the substrate for HtrA2, suggesting that both HtrA2 and SOD1 may be important for modulating the HtrA2-SOD1-mediated apopotic cell death that is associated with the pathogenesis of neurodegenerative disorder.

Identification and Molecular Characterization of Superoxide Dismutase Genes in Pseudomonas rhodesiae KK1 Capable of Polycyclic Aromatic Hydrocarbon Degradation (PAH를 분해할 수 있는 Pseudomonas rhodesiae KK1의 SOD 유전자의 동정 및 분자학적 특성 분석)

  • Lee, Dong-Heon;Oh, Kye-Heon;Kim, Seung Il;Kahng, Hyung-Yeel
    • Journal of Life Science
    • /
    • v.26 no.1
    • /
    • pp.75-82
    • /
    • 2016
  • Pseudomonas rhodesiae KK1 has been reported to degrade polycyclic aromatic hydrocarbons (PAHs), such as anthracene, naphthalene, and phenanthrene, which are considered major environmental contaminants. Interestingly, antioxidant genes, including superoxide dismutase, are known to be expressed at different levels in response to environmental contaminants. This study was performed to identify the superoxide dismutase gene in strain KK1, which may be indirectly involved with degradation of PAHs, as well as to investigate the expression pattern of the superoxide dismutase gene in cells grown on different PAHs. Two types of superoxide dismutase genes responsible for the antioxidant defense mechanism, Mn-superoxide dismutase (sodA) and Fe-superoxide dismutase (sodB), were identified in P. rhodesiae KK1. The sodA gene in strain KK1 shared 95% similarity, based on 141 amino acids, with the Mn-sod of P. fluorescens Pf-5. The sodB strain, based on 135 amino acids, shared 99% similarity with the Fe-sod of P. fluorescens Pf-5. Southern hybridization using the sod gene fragment as a probe showed that at least two copies of superoxide dismutase genes exist in strain KK1. RT-PCR analysis revealed that the sodA and sodB genes were more strongly expressed in response to naphthalene and phenanthrene than to anthracene. Interestingly, sodA and sodB activities were revealed to be maintained in cells grown on all of the tested substrates, including glucose.

CHIP promotes the degradation of mutant SOD1 by reducing its interaction with VCP and S6/S6' subunits of 26S proteasome

  • Choi, Jin-Sun;Lee, Do-Hee
    • Animal cells and systems
    • /
    • v.14 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • Previously we showed that CHIP, a co-chaperone of Hsp70 and E3 ubiquitin ligase, can promote the degradation of mutant SOD1 linked to familial amyotrophic lateral sclerosis (fALS) via a mechanism not involving SOD1 ubiquitylation. Here we present evidence that CHIP functions in the interaction of mutant SOD1 with 26S proteasomes. Bag-1, a coupling factor between molecular chaperones and the proteasomes, formed a complex with SOD1 in an hsp70-dependent manner but had no direct effect on the degradation of mutant SOD1. Instead, Bag-1 stimulated interaction between CHIP and the proteasome-associated protein VCP (p97), which do not associate normally. Over-expressed CHIP interfered with the association between mutant SOD1 and VCP. Conversely, the binding of CHIP to mutant SOD1 was inhibited by VCP, implying that the chaperone complex and proteolytic machinery are competing for the common substrates. Finally we observed that mutant SOD1 strongly associated with the 19S complex of proteasomes and CHIP over-expression specifically reduced the interaction between S6/S6' ATPase subunits and mutant SOD1. These results suggest that CHIP, together with ubiquitin-binding proteins such as Bag-1 and VCP, promotes the degradation of mutant SOD1 by facilitating its translocation from ATPase subunits of 19S complex to the 20S core particle.

Genomic Structure of the Cu,Zn Superoxide Dismutase (SOD1) Gene of Paecillomyces tenuipes and Paecilomyces sp.

  • Park Nam Sook;Lee Kwang Sik;Lee Sang Mong;Je Yeon Ho;Park Eunju;Sohn Hung Dae;Jin Byung Rae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.10 no.1
    • /
    • pp.35-43
    • /
    • 2005
  • We describe here the complete nucleotide sequence and the exon-intron structure of the Cu,Zn superoxide dismutase (SOD1) gene of Paecilomyces tenuipes and Paecilomyces sp. The SOD1 gene of P. tenuipes spans 966 bp, and consisted of three introns and four exons coding for 154 amino acid residues. Three unambiguous introns in P. tenuipes separate exons of 13, 332, 97, and 20 bp, all exhibiting exon sizes identical to Cordyceps militaris SOD1 gene. The SOD1 gene of Paecilomyces sp. contains 946 bp and consisted of four introns and five exons coding for 154 amino acid residues. Five exons of Paecilomyces sp. SOD1 are composed of 13, 180, 152, 97, and 20 bp. Interestingly, this result showed that the total length of exons 2 (180 bp) and 3 (152 bp) of Paecilomyces sp. SOD1 is same to exon 2 length (332 bp) of C. militaris SOD1 and P. tenuipes SOD1. The deduced amino acid sequence of the P. tenuipes SOD1 showed $95\%$ identity to C. militaris SOD1 and $78\%$ to Paecilomyces sp. SOD1. Phylogenetic analysis confirmed that the C. militaris SOD1, P. tenuipes SOD1 and Paecilomyces sp. SOD1 are placed together within the ascomycetes group of fungal clade.

Transgenic Tomato Plants That Overexpress Superoxide Dismutase in Fruits (토마토 과실에서 Superoxide Dismutase를 고발현하는 형질전환 식물체)

  • Park, Eun-Jeong;Lee, Haeng-Soon;Kwon, Suk-Yoon;Choi, Kwan-Sam;Kwak, Sang-Soo
    • Journal of Plant Biotechnology
    • /
    • v.29 no.1
    • /
    • pp.7-13
    • /
    • 2002
  • Superoxide dismutase (SOD) plays an important role in cellular defense against oxidative stress in plants. We have developed transgenic tomato plants overexpressing a cassava SOD in fruits. Three transgenic tomato plants (one from cv. Pink forcer and two from cv. Koko) using a new vector system, ASOp :: . mSOD1/pBI101, harboring ascorbate oxidase promoter (ASOp) expressing dominantly in cucumber fruits, CuZnSOD cDNA (mSOD1) isolated from cultured cells of cassava, and nptll gene as a selectable marker were successfully developed. SOD specific activity (units/mg protein) in transgenic fruits of both cultivars was increased with maturation of the fruits. SOD specific activity of well-mature fruits in transgenic Pink forcer and Koko showed approximately 1.6 and 2.2 times higher than control fruits, respectively. The strength of SOD isoenzyme bands well reflected the SOD activity during the fruit maturation. These results suggested that SOD gene was properly introduced into tomato fruits in a fruit-dominant expression manner by ASO promoter.

Genomic Structure of the Cu/Zn Superoxide Dismutase(SOD1) Gene from the Entomopathogenic Fungus, Cordyceps pruinosa

  • Park, Nam Sook;Jin, Byung Rae;Lee, Sang Mong
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.39 no.2
    • /
    • pp.67-73
    • /
    • 2019
  • The genomic structure of the Cu/Zn superoxide dismutase (SOD1) gene from the entomopathogenic fungus, Cordyceps pruinosa was characterized. The SOD1 gene of C. pruinosa spans 947 nucleotides and consisted of four exons encoding for 154 amino acids and three introns. Four exons of the SOD1 gene are composed of 13, 331, 97 and 20 nucleotides respectively. Homology search of amino acid sequences of the SOD1 gene of C. pruinosa with another 13 fungi species showed higher sequence similarity of 69% ~ 95% and had the most highest sequence identity of 95% with Beauveria bassiana and Cordyceps militaris, which can easely infect domesticated Bombyx mori and another wild lepidopteran species in artificial or natual manner of infection. This SOD1 gene sequence showed copper, zinc and beta-barrel fold sites. Homology search showed that the Cu/Zn SOD1 gene from the entomopathogenic fungus, C. pruinosa is an orthologous gene homolog present in different species of organism whose ancestor predates the split between the relating species. In addition, C. pruinosa SOD1 gene is placed together within the ascomycetes group of fungal clade. From these results it is concluded that C. pruinosa SOD1 gene is orthologous gene having the same or very similar functions with a common evolutionary ancestor.

Effect of Bottom Sediments on Oxygen Demand of Overlying Water in Onshore of Lake (팔당호 수변부 퇴적물이 수층의 산소소모에 미치는 영향)

  • Kang, Yang-Mi;Song, Hong-Gyu
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.1 s.89
    • /
    • pp.23-30
    • /
    • 2000
  • n situ sediment oxygen demand (SOD), which takes place with the uptake of dissolved oxygen for biological metabolism and chemical oxidation in sediments, ranged from 1.57 to $12.55\;mg\;O_2\;m^{-2}\;h^{-1}$ in onshore of Lake Paldang from April to November 1999. SOD was influenced by the amount of organics and oxygen diffusion. Comparing the oxygen demands partitioning between overlying water and sediment during initial phase, SOD accounted for $63.8{\sim}94%$ of total oxygen demand in Lake Paldang. The chemical SOD and nitrogenous oxygen demand ranged $1.2{\sim}18.3%$ and $8.3{\sim}51.7%$ of total SOD, respectively. This result indicated that SOD in Lake Paldang occurred mainly by aerobic respiration and nitrification. Although the flow velocity could increase SOD within a certain limit, the effect of sediment depth on SOD was dependent on physicochemical properties of the sediment. This study showed that SOD can represent a significant portion of the total oxygen up-take in Lake Paldang. Therefore, the assessment of SOD might be necessary for the control of water quality.

  • PDF

Cloning and Characterization of the Cu,Zn Superoxide Dismutase (SOD1) cDNA from the Spider, Araneus ventricosus

  • Choi Young Soo;Choo Young Moo;Li Jianhong;Sohn Hung Dae;Jin Byung Rae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.10 no.1
    • /
    • pp.73-77
    • /
    • 2005
  • A Cu,Zn superoxide dismutase (SOD1) cDNA was cloned from the spider, Araneus ventricosus. The A. ventricosus SOD1 (AvSOD1) cDNA contains an open reading frame of 495 bp encoding 165 amino acid polypeptide with a predicted molecular mass of 17,114 Da and pI of 6.55, and possesses the typical metal binding ligands of six histidines and one aspartic acid common to SOD1s. The deduced amino acid sequence of the AvSOD1 cDNA showed $51\%$ identity to Ceratitis capitata SOD1, and $50\%$ to SOD1 sequences of both Drosophila melanogaster and Chymomyza amoena. Northern blot analysis revealed the presence of AvSOD1 transcripts in all tissues examined.