• Title/Summary/Keyword: SREPB-1c

Search Result 6, Processing Time 0.019 seconds

Effect of n-6/n-3 fatty acid ratio on lipid metabolism in obesity model rats (n-6/n-3 지방산 비율이 비만 랫드의 지질대사에 미치는 영향)

  • Shin, Jong-Suh;Um, Kyung-Hwan;Park, Byung-Sung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.654-666
    • /
    • 2018
  • This study was determined the effects of dietary omega-6 and 3 fatty acid ratios (n-6/n-3, 0, 4:1, 15:1, 30:1) on lipid metabolism in obese model animal rats. Blood triacylglycerol, total cholesterol, LDL-C, glucose, ALT, AST, insulin, and leptin concentrations in n-6/n-3 group were decreased by 22.21, 20.60, 52.96, 15.71, 11.97, 9.13, 37.57, 45.98%, respectively, while HDL-C and phospholipid concentrations were increased by 28.38, 80.39% respectively, compared with control group, as especially in 4:1 group showed the greatest effect. SREPB-$1{\alpha}$ and SREPB-2 mRNA in liver tissues were down-regulated in n-6/n-3 group, but LPL-mRNA of PPARs in adipose tissue was up-regulated compared with control group. The adipocyte size in liver tissues was decreased in the order of n-6/n-3 ratio of 30:1, control, 15:1 groups, and the adipocyte size in adipose tissues was decreased in the order of n-6/n-3 ratio of control, 30:1, 15:1, 4:1 groups.

Lipid lowering mechanism of sulfur-fed grain larvae extract in high-fat induced obesity rats (고지방식이 유도 비만 랫드에 대한 유황오곡충 추출물의 지질감소 메카니즘)

  • Hwangbo, Jong;Park, Sang-Oh;Park, Byung-Sung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.572-583
    • /
    • 2014
  • This study was carried out to determine the action mechanism of sulfur-grain larvae extract (SGE) on anti-obesity and the reduction of blood lipid level in high-fat diet induced obese model animals. Animals were classified into a normal diet group (NC, normal control), HFD (high-fat diet without SGE), HFD 15 (high-fat diet + oral administration of 15 mg of SGE extract per 100 g body weight) and HFD 30 (high-fat diet + oral administration of 30 mg of SGE extract per 100 g body weight). The body weight gain declined in HFD 15 and HFD 30 groups compared with the HFD group, even though the diet intake increased significantly. The weight of liver and adipose tissue increased significantly in HFD group compared with in the HFD 15 and HFD 30 groups. Triglyceride, total cholesterol, LDL-C and AI decreased in HFD 15 and HFD 30 groups compared with in the HFD group, but the contents of HDL-C increased significantly. Expression of SREPB-$1{\alpha}$, SREPB-2 mRNA in the liver was lower in the high-fat diet group compared with the HFD group, but the expression of LPL mRNA in adipose tissue and $PPAR{\alpha}$ increased significantly. Fat accumulation in the liver tissues and liver damage were greatly reduced in HFD 15 and HFD 30 groups compared with in the HFD group. The size of adipocytes became smaller in the HFD 15 and HFD 30 groups compared with HFD group. In conclusion, this research discovered for the first time that grain maggot has anti-obesity effects, by reducing the abdominal fat of obese model animals and lowering blood lipid level through the down-regulation of PPAR-$1{\alpha}$ and SREPB-2 mRNA and the up-regulation of PPAR-${\alpha}$ mRNA.

Anti-adipogencic Effect of Piper Nigrum Linne (호초(胡椒)의 지방세포 억제 효과)

  • Jeong, Hong-Suk;Jeong, Ji-Cheon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.1
    • /
    • pp.118-123
    • /
    • 2010
  • Piper nigrum Linne has been used spice as well as herbal medicine in worldwide and has function of anti-oxidant, anti-inflammation, anti-cancer, bioavailability of drugs and etc. In this study, anti-adipogenic activity of Piper nigrum Linne extract and its constituent piperine were investigated in 3T3-L1 differentiation. Adipogenic effects and lipid accumulation in 3T3-L1 was measured by RT-PCR and Oil Red O staining assays respectively in stimulation of Piper nigrum Linne extract and piperine. Piper nigrum Linne and piperine reduced lipid accumulation in 3T3-L1 differentiation and expression of genes associated with adipogenesis such as PPAR${\gamma}$, adipsin, SERBP-1c and LPL. All of taken, anti-adipogenic mechanism of Piper nigrum Linne and piperine were related with regulation of SREBP-1c and PPAR${\gamma}$ expression.

Anti-adipogenic Effect of Kaempferol, a Component of Polygonati Rhizoma (황정(黃精)과 Kaempferol의 지방세포 분화 억제 효과)

  • Jang, Jae-Sik;Jeong, Ji-Cheon
    • The Journal of Korean Medicine
    • /
    • v.31 no.2
    • /
    • pp.158-166
    • /
    • 2010
  • Objective: It has been reported that Polygonati rhizoma (Pr) has anti-hyperglycemia, anti-triglycemia, anti-diabetic, and anti-tumor activity. Total extract of Pr was tested to identify anti-adipogenic activity in 3T3-L1 differentiation and molecular mechanism of Pr in 3T3-L1 differentiation. Methods: Differentiation of 3T3-L1 pre-adipocyte was induced in the presence of Pr extract and kaempferol. The level of lipid accumulation was measured by Oil Red O staining. The expression of genes associated with adipocyte differentiation was measured by RT-PCR. Results: Extract of Pr and its component kaempferol reduced lipid accumulation in 3T3-L1 during adipogenesis and also reduced mRNA levels of genes associated with adipogenesis, such as adipsin, aP2, LPL, SERBP-1c and $PPAR{\gamma}$. Conclusions: In this study, we showed that the molecular mechanism of Pr and kaempferol activity is related to regulation of $PPAR{\gamma}$ expression and activation.

Extracts of Housefly Maggot Reduces Blood Cholesterol in Hypercholesterolemic Rats (고콜레스테롤 랫드에서 파리유충 추출물의 혈액지질 감소기전)

  • Park, Byung-Sung;Park, Sang-Oh
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.101-112
    • /
    • 2014
  • The aim of this study was to evaluate the biological mechanism of orally administered ethanolic extract of fly maggot(EM) on hypocholesterolemic rats fed a high-cholesterol diet. Sprague Dawley male rats were divided into four groups (EM dose control=0, 5.0, 7.0, and 9.0 mg/100 g BW) and were treated for 6 weeks. EM groups revealed a significant reduction in serum triglyceride, total cholesterol, and LDL-C when compared with the control group(p<0.05). HMG-CoA reductase activity in EM groups were lower than those of the control group, but total sterol, neutral sterol, and bile acid excretion were increased in EM groups when compared with the control group(p<0.05). To identify the biological mechanism of EM towards the hypocholesterolemic effect, sterol response element binding proteins (SREBPs) and the peroxisome proliferator-activated receptors ($PPAR{\alpha}$ transcription system were determined in rats fed a high-cholesterol diet. It was discovered that EM suppress the expression of SREBP-$1{\alpha}$ and SREBP-2 mRNA in the liver tissues of high-cholesterol diet fed rats, while simultaneously increasing the expression of $PPAR{\alpha}$ mRNA(p<0.05). This finding indicates that EM may have hypocholesterolemic effects in rats fed a high-cholesterol diet, by regulating cholesterol metabolism-related biochemical parameters and SREBP-$1{\alpha}$ SREPB-2 and $PPAR{\alpha}$gene expression.

Effects of dietary Gelidium elegans extract on fat metabolism in preadipocyte cell and mice fed a high-fat diet (개별인정원료 우뭇가사리추출물의 체지방 감소에 관한 기능성 고찰)

  • Lee, Boo-Yong;Chung, Hee-Chul
    • Food Science and Industry
    • /
    • v.53 no.4
    • /
    • pp.390-396
    • /
    • 2020
  • We investigated the anti-obesity effect of Gelidium elegans extract (GE) on 3T3-L1 preadipocytes and a high-fat-diet (HFD)-induced mouse model. The results of the present study demonstrated that GE prevents weight gain induced by a high-fat diet (HFD) by modulating the adenosine monophosphate-activated protein kinase (AMPK)-PR domain-containing 16 (PRDM16)-uncoupling protein-1 (UCP-1) pathway in a mice model. Moreover, in vitro results show that GE suppressed adipocyte differentiation by modulating adipogenic regulators, stimulated lipolysis by activating ATGL, and inhibited adipogenesis by downregulating various enzymes associated with triglyceride synthesis. GE was also found to upregulate AMPK phosphorylation as well as the expression of UCP1 and PRDM16 proteins, leading to measurable changes in the beige-like phenotype differentiation of 3T3-L1 cells. Taken together, these findings suggest the role of GE as a functional food ingredient extracted from Gelidium elegans to increase energy expenditure and anti-obesity efficacy.