• Title/Summary/Keyword: Section Representation

Search Result 93, Processing Time 0.029 seconds

Computer-Aided Process Planning System of Cold Forging and its Verification by F.E. Simulation (냉간단조 공정설계 시스템과 유한요소해석에 의한 검증)

  • Lee, E.H.;Kim, D.J.;Park, J.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.4
    • /
    • pp.43-52
    • /
    • 1996
  • This paper describes interactive computer procedures for design the forming sequences in cold forging. This system is implemented on the personal computer and its environment is a commercial AutoCAD system. The programming language. AutoLISP, was used for the configuration of the system. Since the process of metal forming can be considered as a transformation of geometry, treatment of the geometry of the part is a key in process planning. To recognize the part section geometry, the section entity representation, the section coordinate-redius representation and the section primitive geometru were adopted. This system includes six major modules such as input module, forging design module, forming sequence design module, die design module, FEM verification module and output module which are used independently or in all. The sequence drawing wigh all dimensions, which includes the dimensional tolerances and the proper sequence of operations, can generate under the environment of AutoCAD. The acceptable forming sequences can be verified further, using the FE simulation.

  • PDF

Instruction method for Quadratic Curve Based on Dynamic Visual Representation by applying GeoGebra (GeoGebra를 활용한 역동적인 시각적 표상에 기반한 이차곡선 지도 방안)

  • Yang, Seong-Hyun;Kang, Ok-Ki
    • School Mathematics
    • /
    • v.13 no.3
    • /
    • pp.447-468
    • /
    • 2011
  • For the instruction of units dealing with the conic section, the most important factor that we need to consider is the connections. In other words, the algebraic approach and the geometric approach should be instructed in parallel at the same time. In particular, for the students of low proficiency who are not good at algebraic operation, the geometric approach that employs visual representation, expressing the conic section's characteristic in a dynamic manner, is an important and effective method. For this, during this research, to suggest the importance of dynamic visual representation based on GeoGebra in teaching Quadratic Curve, we taught an experimental class that suggests the instruction method which maximizes the visual representation and analyzed changes in the representation of students by analyzing the part related to the unit of a parabola from units dealing with a conic section in the "Geometry and Vector" textbook and activity book.

  • PDF

ITERATIONS OF THE UNIT SINGULAR INNER FUNCITON

  • Kim, Hong-Oh
    • Bulletin of the Korean Mathematical Society
    • /
    • v.25 no.2
    • /
    • pp.243-246
    • /
    • 1988
  • Let M(z)=exp (-1+z/1-z) be the unit singular inner function. See [1] or [2] for the basic facts about inner functions. We define the iterations of M9z) as (Fig.) Since the composition M$_{2}$(z)=M.M(z) is known (see [5] for example) to be singular inner function it has the "cannonical" representation (Fig.) where .mu. is a finite, positive singular Borel measure on the unit circle T. In section 2, we have explicit cannonical representation of M$_{2}$(z) by determining the singular measure .mu. In section 3 we show that (Fig.) These facts might have been known but could not be found in the literature.iterature.

  • PDF

Automated Forming Sequence Design System for Multistage Cold Forging Parts (다단 냉간단조품의 자동공정설계시스템)

  • Park, J.C.;Kim, B.M.;Kim, S.W.;Kim, H.K.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.4
    • /
    • pp.77-87
    • /
    • 1994
  • This paper deals with an automated forming sequence design system by which designers can determine desirable operation sequences even if they have little experience in the design of cold forging process. The forming sequence design in the cold forging is very important and requires many kinds of technical and empirical knowledge. They system isproposed, which generates forming sequence plans for the multistage cold forging of axisymmtrical solid products. Since the process of metal forming can be considered as a transformation of geometry, treatment of the geometry of the product is a key in planning process. To recognize the geometry of the product section, section entity representation and primitive geometries were used. Section entity representation can be used for the calculation of maximum diameter, maximum height, and volume. Forming sequence for the part can be determined by means of primitive geometries such as cylinder, cone, convex, and concave. By utilizing this geometrical characteristics (diameter, height, and radius), the product geometry is expressed by a list of the priitive geometries. Accordingly the forming sequence design is formulated as the search problem which starts with a billet geometry and finishes with a given product one. Using the developed system, the sequence drawing with all dimensions, which includes the proper sequence of operations for the part, is generated under the environment of AutoCAD. Based on the results of forming sequence, process variables(strain, punch pressure, die inner pressure, and forming load) are determined.

  • PDF

FEYNMAN-KAC SEMIGROUPS, MARTINGALES AND WAVE OPERATORS

  • Van Casteren, Jan A.
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.227-274
    • /
    • 2001
  • In this paper we intended to discuss the following topics: (1) Notation, generalities, Markov processes. The close relationship between (generators of) Markov processes and the martingale problem is exhibited. A link between the Korovkin property and generators of Feller semigroups is established. (2) Feynman-Kac semigroups: 0-order regular perturbations, pinned Markov measures. A basic representation via distributions of Markov processes is depicted. (3) Dirichlet semigroups: 0-order singular perturbations, harmonic functions, multiplicative functionals. Here a representation theorem of solutions to the heat equation is depicted in terms of the distributions of the underlying Markov process and a suitable stopping time. (4) Sets of finite capacity, wave operators, and related results. In this section a number of results are presented concerning the completeness of scattering systems (and its spectral consequences). (5) Some (abstract) problems related to Neumann semigroups: 1st order perturbations. In this section some rather abstract problems are presented, which lie on the borderline between first order perturbations together with their boundary limits (Neumann type boundary conditions and) and reflected Markov processes.

  • PDF

A Representation of the Nonlinear Axis in the G. C (G. C에 있어서 비선형축의 표현)

  • 조동욱;최병욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.13 no.4
    • /
    • pp.309-321
    • /
    • 1988
  • This paper proposes on the algorithm of axis equation & radius function for the G.C representation which describes the curved objects with circular cross section. Object combined with linear and nonlinear parts is detached by clustering from depth data & axis points is extracted by normal vecter of the surface mask patches. In ths case of nonlinear axis point, axis equation is described by Hermite curve & the effectiveness of this paper is demonstrated by serveral experiments.

  • PDF

Development of near field Acoustic Target Strength equations for polygonal plates and applications to underwater vehicles (근접장에서 다각 평판에 대한 표적강도 이론식 개발 및 수중함의 근거리 표적강도 해석)

  • Cho, Byung-Gu;Hong, Suk-Yoon;Kwon, Hyun-Wung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1062-1073
    • /
    • 2007
  • Acoustic Target Strength (TS) is a major parameter of the active sonar equation, which indicates the ratio of the radiated intensity from the source to the re-radiated intensity by a target. In developing a TS equation, it is assumed that the radiated pressure is known and the re-radiated intensity is unknown. This research provides a TS equation for polygonal plates, which is applicable to near field acoustics. In this research, Helmholtz-Kirchhoff formula is used as the primary equation for solving the re-radiated pressure field; the primary equation contains a surface (double) integral representation. The double integral representation can be reduced to a closed form, which involves only a line (single) integral representation of the boundary of the surface area by applying Stoke's theorem. Use of such line integral representations can reduce the cost of numerical calculation. Also Kirchhoff approximation is used to solve the surface values such as pressure and particle velocity. Finally, a generalized definition of Sonar Cross Section (SCS) that is applicable to near field is suggested. The TS equation for polygonal plates in near field is developed using the three prescribed statements; the redection to line integral representation, Kirchhoff approximation and a generalized definition of SCS. The equation developed in this research is applicable to near field, and therefore, no approximations are allowed except the Kirchhoff approximation. However, examinations with various types of models for reliability show that the equation has good performance in its applications. To analyze a general shape of model, a submarine type model was selected and successfully analyzed.

  • PDF

A Study on the Representational Quality of Architectural Presentation Drawings after Deconstructivism (해체주의 이후 건축 디자인 도면의 표현특성에 관한 연구)

  • 문은미
    • Korean Institute of Interior Design Journal
    • /
    • no.37
    • /
    • pp.48-54
    • /
    • 2003
  • This study investigates great potential of architectural representation drawings for architects as well as designers to realize their design concept into visual forms. In 1988, an exhibition called "Deconstruction in Architecture" at Modern Art Museum, New York, was an important turning point in design representation. The study examines design drawings of architects of deconstructivism to analyze new attitudes toward building forms and programs in contemporary architecture. The study found in the drawings that initially, collages in many different types are often utilized to express simultaneous time and space. Secondly, section drawings become more important to explain ambiguous and complex floor system than before. Thirdly, cinematic montages are utilized to express indeterminate or loose programs. Fourthly, diagrams are utilized to visualize initial conditions and clues of design solution. The study concludes that design drawings are not only representation media admitting of changes and progress but also tools of design creation. creation.

Representation of Sweep Surface in Bicubic Spline surface Form (쌍3차 스플라인곡면 식에 의한 이동곡면의 표현)

  • 전차수;조형래;박세형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.1005-1012
    • /
    • 1995
  • This paper proposes a new approach for modeling sweep surfaces. The overall modeling procedure consists of following steps : (1)remeshing the section curves based on the curve lengths ; (2)remeshing the guide curve and the boundary curves based on a given sweeping rule ; (3)obtaining intermediate section curves at the remeshed points of the guide curve by blending the initial section curves ; (4)compensation of the intermediate section curves ; (5)interpolating the initial and intermediate curves using Hermite interpolant. The resulting sweep surface is expressed in a G$^{2}$ bicubic parametric spline surface.

Certain exact complexes associated to the pieri type skew young diagrams

  • Chun, Yoo-Bong;Ko, Hyoung J.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.29 no.2
    • /
    • pp.265-275
    • /
    • 1992
  • The characteristic free representation theory of the general linear group has found a wide range of applications, ranging from the theory of free resolutions to the symmetric function theory. Representation theory is used to facilitate the calculation of explicit free resolutions of large classes of ideals (and modules). Recently, K. Akin and D. A. Buchsbaum [2] realized the Jacobi-Trudi identity for a Schur function as a resolution of GL$_{n}$-modules. Over a field of characteristic zero, it was observed by A. Lascoux [6]. T.Jozefiak and J.Weyman [5] used the Koszul complex to realize a formula of D.E. Littlewood as a resolution of schur modules. This leads us to further study resolutions of Schur modules of a particular form. In this article we will describe some new classes of finite free resolutions associated to the Pieri type skew Young diagrams. As a special case of these finite free resolutions we obtain the generalized Koszul complex constructed in [1]. In section 2 we review some of the basic difinitions and properties of Schur modules that we shall use. In section 3 we describe certain exact complexes associated to the Pieri type skew partitions. Throughout this article, unless otherwise specified, R is a commutative ring with an identity element and a mudule F is a finitely generated free R-module.e.

  • PDF