• 제목/요약/키워드: Seismic Rehabilitation

검색결과 81건 처리시간 0.019초

Performance-based plastic design for seismic rehabilitation of high rise frames with eccentric bracing and vertical link

  • Karimi, Rouhina;Rahimi, Sepideh
    • Earthquakes and Structures
    • /
    • 제17권6호
    • /
    • pp.623-633
    • /
    • 2019
  • A large number of available concrete buildings designed only considering gravity load that require seismic rehabilitation because of failure to meet plasticity criteria. Using steel bracings are a common type of seismic rehabilitation. The eccentric bracings with vertical link reduce non-elastic deformation imposed on concrete members as well as elimination of probable buckling problems of bracings. In this study, three concrete frames of 10, 15, and 20 stories designed only for gravity load have been considered for seismic improvement using performance-based plastic design. Afterwards, nonlinear time series analysis was employed to evaluate seismic behavior of the models in two modes including before and after rehabilitation. The results revealed that shear link can yield desirable performance with the least time, cost and number of bracings of concrete frames. Also, it was found that the seismic rehabilitation can reduce maximum relative displacement in the middle stories about 40 to 80 percent. Generally, findings of this study demonstrated that the eccentric bracing with vertical link can be employed as a suitable proxy to achieve better seismic performance for existing high rise concrete frames.

비대칭 벽식 구조지 변위기초 내진성능평가 및 보강 (Displacement-based Seismic Assessment and Rehabilitation of Asymmetric Wall Structures)

  • 홍성걸;하태휴
    • 한국지진공학회논문집
    • /
    • 제9권3호
    • /
    • pp.23-32
    • /
    • 2005
  • 편심이 있는 구조물이 지진하중을 받는 경우 비틀림의 발생으로 특정부재에 응력 및 변위가 집중되고 이는 전혀 예상치 못한 구조물의 파괴를 유발할 수 있다. 본 연구에서는 각 횡저항 부재의 한계 변위를 기반으로 하여 구조물 전체의 횡변위와 비틀림각의 관계도(D-R Relationship: Displacement-Rotation Relationship)를 작성하고 변위스펙트럼을 이용하여 내진성능평가를 수행하는 방법을 제안한다. 제안된 내진성능평가의 방법은 시간이력해석의 결과를 이용해서 검증하였다. 또한 다양한 지진수준에 대해 구조물의 다른 성능수준을 기준으로 하는 다단계 내진성능평가를 수행하였다. 최종적으로 그 결과를 기준으로 D-R 관계도를 이용한 내진보강 전략을 제시하였다. 내진보강은 각 부재의 강도/강성을 증가시키는 방법과 연성도를 증가시키는 두 가지의 방법을 사용하였다. 특히 강도/강성을 증가시키는 내진보강 전략에서는 보강의 최적화를 위하여 보강전략을 최적화 문제로 구성하고 BFGS Quasi-Newton method를 이용하여 최적보강전략을 수립하는 과정을 제시하였다.

친환경 연성모르타르와 섬유로드를 이용한 내진보강 방안에 관한 연구 (A Study on the Seismic Rehabilitation Method through Using Environmentally-friendly Ductile Mortar and Fiber Materials)

  • 백종명;신민호;김한배;김박진
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.3237-3250
    • /
    • 2011
  • As the growing concern about environment and earthquake for the concrete structure, many seismic rehabilitation and retrofitting methods have recently been studied but they are not coping enough with the changes of structure, specificly various problems have been found in seismic rehabilitation method - both in exposure or non exposure - when they are implemented to the underground structure, utility conduit, water supply facilities, underground wall, parking lot, road pavement, and elevated structure etc. This study is about the seismic rehabilitation method using environmentally friendly functional inorganic mortar and resilient material, and it is effectively retrofitted seismic performance as it reinforces not only physical strength, but also flexural and bond strength from the resilient material, and it has been analyzed and evaluated when the environmentally friendly functional inorganic mortar and the resilient material are applied so as to countermeasure the effect of earthquake and viable problems and approved for possibility of various applications and wide use.

  • PDF

State of Practice of Performance-Based Seismic Design in Korea

  • Lee, Dong-Hun;Kim, Taejin;Kim, Jong-Ho;Kang, Dae-Eon
    • 국제초고층학회논문집
    • /
    • 제1권3호
    • /
    • pp.195-201
    • /
    • 2012
  • Today, a great effort to develop PBSD procedure to be utilized in Korea is given by domestic structural engineers, academics, and governmental organizations. After Great East Japan Earthquake (2011) took place, lots of clients in Korea became to concern of their buildings so that requests of seismic performance evaluation and seismic rehabilitation for existing buildings have been gradually increased. Such interests in seismic events initiated a rapid development of a series of guidelines for seismic performance evaluation and seismic performance enhancement. For new buildings, however, design guidelines for PBSD are yet well prepared in Korea and prescriptive design methods are dominant design procedure still. Herein, seismicity demands used in seismic performance evaluation and some important design parameters in NLRH are introduced. Some project examples for seismic performance evaluation and rehabilitation applying passive energy dissipation devices are also described in the latter part of paper.

확률적 지진요구모델을 이용한 구조물의 최적 내진보강 (Optimal Seismic Rehabilitation of Structures Using Probabilistic Seismic Demand Model)

  • 박주남;최은수
    • 한국지진공학회논문집
    • /
    • 제12권3호
    • /
    • pp.1-10
    • /
    • 2008
  • 내진설계기준이 반영되지 않은 기존 구조물의 경우 내진보강에 의하여 구조물의 내진성능을 향상시킬 수 있다. 내진보강의 수준을 합리적으로 결정하기 위해서는 구조물의 사용기간 동안에 예상되는 지진피해 관련 손실이 최소화되도록 하여야 하는데, 이를 위해서는 구조물이 위치한 지역에 대한 지진의 강도별 발생빈도, 지진에 의한 구조물의 기능상실 및 직접/간접 피해를 복합적으로 고려하여 구조물의 예상 손실비용을 산정하여야 하며 이는 구조물 손상에 대한 지진위험도 해석을 통해서 그 해석을 수행할 수 있다. 본 연구에서는 확률적 지진요구모델을 이용한 위험도 평가를 통하여 구조물의 지진에 대한 피해 손실을 정량적으로 산정하고 이를 바탕으로 초기비용과 예상손실비용을 포함한 총 손실비용을 최소화시킬 수 있도록 내진보강 수준을 최적화하는 절차를 제시하였다. 구조물과 관련된 지진피해 산정에 있어서 지진하중의 강도별 발생확률 및 구조물의 손상확률을 동시에 고려하여 구조물 생애주기에 대한 구조물의 지진손상 확률밀도함수 및 누적분포함수를 수식화하였으며 수식의 유효성을 유지하기 위한 확률변수의 유효범위를 정의하였다. 또한 여기에 사회적, 경제적 손실을 정량화하기 위한 손실함수를 결부시켜 구조물과 관련된 지진 피해 손실의 기댓값을 정량적으로 산정할 수 있도록 하였다. 제시된 해석기법은 기존의 시뮬레이션에 의한 손실산정법과 비교하여 해석의 정확도는 잃지 않으면서 구조해석의 반복횟수를 대폭 줄일 수 있다는 장점이 있으며 빌딩과 교량을 비롯한 구조물의 내진성능 평가 및 개선을 위한 의사결정 시에 효율적으로 적용될 수 있을 것으로 판단된다.

Seismic performance evaluation of RC bearing wall structures

  • Rashedi, Seyed Hadi;Rahai, Alireza;Tehrani, Payam
    • Computers and Concrete
    • /
    • 제30권2호
    • /
    • pp.113-126
    • /
    • 2022
  • Reinforced concrete bearing walls (RCBWs) are one of the most applicable structural systems. Therefore, vulnerability analysis and rehabilitation of the RCBW system are of great importance. In the present study, in order to the more precise investigation of the performance of this structural resistant system, pushover and nonlinear time history analyses based on several assumptions drawing upon experimental research were performed on several models with different stories. To validate the nonlinear analysis method, the analytical and experimental results are compared. Vulnerability evaluation was carried out on two seismic hazard levels and three performance levels. Eventually, the need for seismic rehabilitation with the basic safety objective (BSO) was investigated. The obtained results showed that the studied structures satisfied the BSO of the seismic rehabilitation guidelines. Consequently, according to the results of analyses and the desired performance, this structural system, despite its high structural weight and rigid connections and low flexibility, has integrated performance, and it can be a good option for earthquake-resistant constructions.

Comparative assessment of seismic rehabilitation techniques on a full scale 3-story RC moment frame structure

  • Di Ludovico, M.;Balsamo, A.;Prota, A.;Manfredi, G.
    • Structural Engineering and Mechanics
    • /
    • 제28권6호
    • /
    • pp.727-747
    • /
    • 2008
  • In the framework of the SPEAR (Seismic PErformance Assessment and Rehabilitation) research Project, an under-designed three storey RC frame structure, designed to sustain only gravity loads, was subjected, in three different configurations 'as-built', Fiber Reinforced Polymer (FRP) retrofitted and rehabilitated by reinforced concrete (RC) jacketing, to a series of bi-directional pseudodynamic (PsD) tests under different values of peak ground acceleration (PGA) (from a minimum of 0.20g to a maximum of 0.30g). The seismic deficiencies exhibited by the 'as-built' structure after the test at PGA level of 0.20g were confirmed by a post - test assessment of the structural seismic capacity performed by a nonlinear static pushover analysis implemented on the structure lumped plasticity model. To improve the seismic performance of the 'as-built' structure', two rehabilitation interventions by using either FRP laminates or RC jacketing were designed. Assumptions for the analytical modeling, design criteria and calculation procedures along with local and global intervention measures and their installation details are herein presented and discussed. Nonlinear static pushover analyses for the assessment of the theoretical seismic capacity of the structure in each retrofitted configuration were performed and compared with the experimental outcomes.

Rehabilitation and strengthening of exterior RC beam-column connections using epoxy resin injection and FRP sheet wrapping: Experimental study

  • Marthong, Comingstarful
    • Structural Engineering and Mechanics
    • /
    • 제72권6호
    • /
    • pp.723-736
    • /
    • 2019
  • The efficacy of a technique for the rehabilitation and strengthening of RC beam-column connections damaged due to cyclic loading was investigated. The repair mainly uses epoxy resin infused under pressure into the damaged region to retrieved back the lost capacity and then strengthening using fiber reinforced polymer (FRP) sheets for capacity enhancement. Three common types of reduced scale RC exterior beam-column connections namely (a) beam-column connection with beam weak in flexure (BWF) (b) beam-column connections with beam weak in shear (BWS) and (c) beam-column connections with column weak in shear (CWS) subjected to reversed cyclic loading were considered for the experimental investigation. The rehabilitated and strengthened specimens were also subjected to similar cyclic displacement. Important parameters related to seismic capacity such as strength, stiffness degradation, energy dissipation, and ductility were evaluated. The rehabilitated connections exhibited equal or better performance and hence the adopted rehabilitation strategies could be considered as satisfactory. Confinement of damaged region using FRP sheet significantly enhanced the seismic capacity of the connections.

Rehabilitation of exterior RC beam-column connections using epoxy resin injection and galvanized steel wire mesh

  • Marthong, Comingstarful
    • Earthquakes and Structures
    • /
    • 제16권3호
    • /
    • pp.253-263
    • /
    • 2019
  • The efficacy of a galvanized steel wire mesh (GSWM) as an alternative material for the rehabilitation of RC beam-column connections damaged due to reversed cyclic loading was investigated. The repair mainly uses epoxy resin infused under pressure into the damaged zone and then confined using three types of locally available GSWM mesh. The mesh types used herein are (a) Weave type square mesh with 2mm grid opening (GWSM-1) (b) Twisted wire mesh with hexagonal opening of 15 mm (GSWM-2) and (c) welded wire mesh with square opening of 25 mm (GSWM-3). A reduced scale RC beam-column connection detailed as per ductile detailing codes of Indian Standard was considered for the experimental investigation. The rehabilitated specimens were also subjected to similar cyclic displacement. Important parameters related to seismic capacity such as strength, stiffness degradation, energy dissipation, and ductility were evaluated. The rehabilitated connections exhibited equal or better performance and hence the adopted rehabilitation strategies could be considered as satisfactory. Confinement of damaged region using GSWM-1 significantly enhanced the seismic capacity of the connections.

저층 철근 콘크리트 시설물 선형 내진 성능 평가 (Linear Seismic Performance Evaluation Procedure of the Low-Rise Reinforced Concrete Facilities)

  • 김두환;정의도;송관권;김성필
    • 한국공간구조학회논문집
    • /
    • 제18권2호
    • /
    • pp.129-135
    • /
    • 2018
  • Following a 5.8 magnitude earthquake on September 12, 2016 in Gyeongju Province, a magnitude 5.4 earthquake occurred in the northern region of Pohang City on November 15, 2017 in South Korea. Only 7.9 % of the building structures are earthquake-resistant, according to the recent survey conducted by the government agencies in October 2017. In this paper, the linear analysis seismic performance evaluation procedure of the existing school structures presented in the revised methodology(Seismic Performance Evaluation Procedure and Rehabilitation Manual for School Facilities) was introduced. In this paper, the linear analysis evaluation procedure presented in the revised methodology was introduced and the seismic performance index of the example structure was evaluated using the linear analysis evaluation procedure. The seismic retrofit was verified by the linear and nonlinear dynamic analyses using Perform 3D. The analysis results show that the dissipated inelastic energy is concentrated on the retrofitted shear wall and the maximum inter-story drift of the stadium model structure with damping system satisfies the requirement of the current code.