• Title/Summary/Keyword: Sensing Hole Recovery

Search Result 3, Processing Time 0.018 seconds

Uniform Sensor-node Request Scheme for the Recovery of Sensing Holes on IoT Network (IoT 네트워크의 센싱홀 복구를 위한 센서 이동 균등 요청 방법)

  • Kim, Moonseong;Park, Sooyeon;Lee, Woochan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.4
    • /
    • pp.9-17
    • /
    • 2020
  • When IoT sensor nodes are deployed in areas where data collection is challenging, sensors must be relocated if sensing holes occur due to improper placement of sensors or energy depletion, and data collection is impossible. The sensing hole's cluster header transmits a request message for sensor relocation to an adjacent cluster header through a specific relay node. However, since a specific relay node is frequently used, a member sensor located in a specific cluster area adjacent to the sensing hole can continuously receive the movement message. In this paper, we propose a method that avoids the situation in which the sensing hole cluster header monopolizes a specific relay node and allows the cluster header to use multiple relay nodes fairly. Unlike the existing method in which the relay node immediately responds to the request of the header, the method proposed in this paper solves a ping-pong problem and a problem that the request message is concentrated on a specific relay node by applying a method of responding to the request of the header using a timer. OMNeT++ simulator was used to analyze the performance of the proposed method.

A Sensing Radius Intersection Based Coverage Hole Recovery Method in Wireless Sensor Network (센서 네트워크에서 센싱 반경 교차점 기반 홀 복구 기법)

  • Wu, Mary
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.3
    • /
    • pp.431-439
    • /
    • 2021
  • Since the sensor nodes are randomly arranged in the region of interest, it may happen that the sensor network area is separated or there is no sensor node in some area. In addition, after the sensor nodes are deployed in the sensor network, a coverage hole may occur due to the exhaustion of energy or physical destruction of the sensor nodes. The coverage hole can greatly affect the overall performance of the sensor network, such as reducing the data reliability of the sensor network, changing the network topology, disconnecting the data link, and worsening the transmission load. Therefore, sensor network coverage hole recovery has been studied. Existing coverage hole recovery studies present very complex geometric methods and procedures in the two-step process of finding a coverage hole and recovering a coverage hole. This study proposes a method for discovering and recovering a coverage hole in a sensor network, discovering that the sensor node is a boundary node by itself, and determining the location of a mobile node to be added. The proposed method is expected to have better efficiency in terms of complexity and message transmission compared to previous methods.

An Amperometric Proton Selective Sensor with an Elliptic Microhole Liquid/Gel Interface for Vitamin-C Quantification

  • Faisal, Shaikh Nayeem;Hossain, Md. Mokarrom;Lee, Hye-Jin
    • Journal of Electrochemical Science and Technology
    • /
    • v.1 no.2
    • /
    • pp.121-126
    • /
    • 2010
  • An amperometric ascorbic acid selective sensor utilizing the transfer reaction of proton liberated from the dissociation of ascorbic acid in aqueous solution across an elliptic micro-hole water/organic gel interface is demonstrated. This redox inactive sensing platform offers an alternative way for the detection of ascorbic acid to avoid a fouling effect which is one of the major concerns in redox based sensing systems. The detection principle is simply measuring the current change with respect to the assisted transfer of protons by a proton selective ionophore (e.g., ETH 1778) across the micro-hole interface between the water and the polyvinylchloride-2-nitrophenyloctylether gel phase. The assisted transfer reaction of protons generated from ascorbic acid across the polarized micro-hole interface was first characterized using cyclic voltammetry. An improved sensitivity for the quantitative analysis of ascorbic acid was achieved using differential pulse stripping voltammetry with a linear response ranging from 1 to $100\;{\mu}M$ concentrations of ascorbic acid. As a demonstration, the developed sensor was applied for analyzing the content of vitamin-C in different types of commercial pharmaceutical tablets and syrups, and a satisfactory recovery from these samples were also obtained.