• Title/Summary/Keyword: Serum Starvation

Search Result 46, Processing Time 0.036 seconds

Bovine Nuclear Transfer using Ear Skin Fibroblast Cells Derived from Serum Starvation and Passage Numbers

  • Yang, Byoung-Chul;Im, Gi-Sun;Park, Jin-Ki;Kim, Hyun-Ju;Chang, Won-Kyung
    • Proceedings of the KSAR Conference
    • /
    • 2001.03a
    • /
    • pp.64-64
    • /
    • 2001
  • To facilitate the widespread application of somatic cell cloning, improvements in blastocyst production efficiency and subsequent fetal viability are required. Area where technical improvements are needed include donor cell treatments, starvation and passage numbers. This study was carried out to investigate the effect of serum-starvation and passage on the development of ear skin fibroblast cells cloned embryos. A skin biopsy was obtained from the ear of a 2-year-old Korean Hanwoo female. The cells were cultured in 10% FBS+DMEM up to 2-3 months(up to 10 passages) and then used. In Experiment 1, the Korean bovine Ear Skin Fibroblast cells (KbESF) were either serum starved (culture in 0.05% FBS+DMEM) or serum fed (10% FBS+DMEM) for 4-7 days Prior to NT In Experiment 2, the KbESF cells used for nuclear transfer in these experiments were from passages 2 to 10. The development of 208 nuclear transfer (NT) embryos reconstructed from either serum starved or serum fed ear skin fibroblast was assessed. NT embryos reconstructed from serum starved and serum fed cells showed the same developmental rate (cleavage 80.16 vs. 85.37%; blastocyst 20.63 vs. 19,51%). The development of 590 nuclear transfer (NT) embryos reconstructed from passage 2 to 10 was assessed. We observed the same developmental rates for embryos derived from later Passages as compared with those embryos from early passages(blastocyst from 16.69 to 27.91%, average 20.17%). There was no significant difference between serum-fed and serum-starved donor cells. We observed no difference in developmental rates for embryos derived from 2 to 10 passages. These data show that prolonged culture and serum starvation does not affects the cloning competence of adult somatic cells.

  • PDF

Effects of Glutamine Deprivation and Serum Starvation on the Growth of Human Umbilical Vein Endothelial Cells (재대정맥 내피세포의 증식에 미치는 글루타민 및 혈청 결핍의 영향)

  • Jeong, Jin-Woo;Lee, Hye Hyeon;Park, Cheol;Kim, Wun-Jae;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.23 no.7
    • /
    • pp.926-932
    • /
    • 2013
  • Glutamine and serum are essential for cell survival and proliferation in vitro, yet the signaling pathways that sense glutamine and serum levels in endothelial cells remain uninvestigated. In this study, we examined the effects of glutamine deprivation and serum starvation on the fate of endothelial cells using a human umbilical vein endothelial cell (HUVEC) model. Our data indicated that glutamine deprivation and serum starvation trigger a progressive reduction in cell viability through apoptosis induction in HUVECs as determined by DAPI staining and flow cytometry analysis. Although the apoptotic effects were more predominant in the glutamine deprivation condition, both apoptotic actions were associated with an increase in the Bax/Bcl-2 (or Bcl-xL) ratio, down-regulation of the inhibitor of apoptosis protein (IAP) family proteins, activation of caspase activities, and concomitant degradation of poly (ADP-ribose) polymerases. Moreover, down-regulation of the expression of Bid or up-regulation of truncated Bid (tBid) were observed in cells grown under the same conditions, indicating that glutamine deprivation and serum starvation induce the apoptosis of HUVECs through a signaling cascade involving death-receptor-mediated extrinsic pathways, as well as mitochondria-mediated intrinsic caspase pathways. However, apoptosis was not induced in cells grown in glutamine- and serum-free media when compared with cells exposed to glutamine deprivation or serum starvation alone. Taken together, our data indicate that glutamine deprivation and serum starvation suppress cell viability without apoptosis induction in HUVECs.

Inhibitory Role of TRIP-Br1/XIAP in Necroptosis under Nutrient/Serum Starvation

  • Sandag, Zolzaya;Jung, Samil;Quynh, Nguyen Thi Ngoc;Myagmarjav, Davaajargal;Anh, Nguyen Hai;Le, Dan-Diem Thi;Lee, Beom Suk;Mongre, Raj Kumar;Jo, Taeyeon;Lee, MyeongSok
    • Molecules and Cells
    • /
    • v.43 no.3
    • /
    • pp.236-250
    • /
    • 2020
  • Currently, many available anti-cancer therapies are targeting apoptosis. However, many cancer cells have acquired resistance to apoptosis. To overcome this problem, simultaneous induction of other types of programmed cell death in addition to apoptosis of cancer cells might be an attractive strategy. For this purpose, we initially investigated the inhibitory role of TRIP-Br1/XIAP in necroptosis, a regulated form of necrosis, under nutrient/serum starvation. Our data showed that necroptosis was significantly induced in all tested 9 different types of cancer cell lines in response to prolonged serum starvation. Among them, necroptosis was induced at a relatively lower level in MCF-7 breast cancer line that was highly resistant to apoptosis than that in other cancer cell lines. Interestingly, TRIP-Br1 oncogenic protein level was found to be very high in this cell line. Up-regulated TRIP-Br1 suppressed necroptosis by repressing reactive oxygen species generation. Such suppression of necroptosis was greatly enhanced by XIAP, a potent inhibitor of apoptosis. Our data also showed that TRIP-Br1 increased XIAP phosphorylation at serine87, an active form of XIAP. Our mitochondrial fractionation data revealed that TRIP-Br1 protein level was greatly increased in the mitochondria upon serum starvation. It suppressed the export of CypD, a vital regulator in mitochondria-mediated necroptosis, from mitochondria to cytosol. TRIP-Br1 also suppressed shikonin-mediated necroptosis, but not TNF-α-mediated necroptosis, implying possible presence of another signaling pathway in necroptosis. Taken together, our results suggest that TRIP-Br1/XIAP can function as onco-proteins by suppressing necroptosis of cancer cells under nutrient/serum starvation.

Superoxide dismutase 3 protects mesenchymal stem cells through enhanced autophagy and regulation of FoxO3a trafficking

  • Agrahari, Gaurav;Sah, Shyam Kishor;Kim, Tae-Yoon
    • BMB Reports
    • /
    • v.51 no.7
    • /
    • pp.344-349
    • /
    • 2018
  • Therapeutic applications of mesenchymal stem cells (MSCs) are limited due to their early death within the first few days of transplantation. Therefore, to improve the efficacy of cell-based therapies, it is necessary to manipulate MSCs so that they can resist various stresses imposed by the microenvironment. Moreover, the role of superoxide dismutase 3 (SOD3) in regulating such survival under different stress conditions remain elusive. In this study, we overexpressed SOD3 in MSCs (SOD3-MSCs) and evaluated its effect under serum starvation conditions. Nutritional limitation can decrease the survival rate of transplanted MSCs and thus can reduce their efficacy during therapy. Interestingly, we found that SOD3-MSCs exhibited reduced reactive oxygen species levels and greater survival rates than normal MSCs under serum-deprived conditions. In addition, overexpression of SOD3 attenuated starvation-induced apoptosis with increased autophagy in MSCs. Moreover, we have demonstrated that SOD3 protects MSCs against the negative effects of serum deprivation via modulation of AMP-activated protein kinase/sirtulin 1, extracellular signal-regulated kinase activation, and promoted Forkhead box O3a trafficking to the nucleus. Taken together, these results demonstrate that SOD3 promotes MSCs survival and add further evidence to the concept that SOD3-MSCs may be a potential therapeutic agent with better outcomes than normal MSCs for various diseases involving oxidative stress and compromised MSCs survival during therapy.

imc-415 Gene Expression in the Proliferation and Cell Death Phases of Mammary Epithelial Cells

  • Ha, S.H.;Lee, D.Y.;Kho, Y.J.;Baik, M.G.;Choi, Y.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.9
    • /
    • pp.1201-1204
    • /
    • 2000
  • We examined expression patterns of imc-415 gene in mammary gland and in HC11 mammary epithelial cells in culture. mRNA levels of imc-415 gene were higher at pregnancy and involution stages of mouse mammary gland compared with lactation period. Expression of imc-415 gene was induced with serum starvation or treatment with Fas monoclonal antibody in HC11 mammary epithelial cells in culture.

Generation of Reactive Oxygen Species and Subsequent DNA Fragmentation in Bovine Cultured Somatic Cells

  • Hwang, In-Sun;Kim, Ho-Jeong;Park, Chun-Keun;Yang, Boo-Keun;Cheong, Hee-Tae
    • Reproductive and Developmental Biology
    • /
    • v.35 no.4
    • /
    • pp.485-489
    • /
    • 2011
  • The present study was conducted to examine the reactive oxygen species (ROS) generation levels and subsequent DNA damage in the bovine cultured somatic cells. Bovine ear skin cells were classified by serum starvation, confluence and cycling cells. Cells were stained in 10 ${\mu}M$ dichlorohydrofluorescein diacetate ($H_2DCFDA$) or 10 ${\mu}M$ hydroxyphenyl fluorescein (HPF) dye to measure the $H_2O_2$ or $^{\cdot}OH$ radical levels. The samples were examined with a fluorescent microscope, and fluorescence intensity was analyzed in each cell. $H_2O_2$ and $^{\cdot}OH$ radical levels of cultured somatic cells were high in confluence group ($7.1{\pm}0.7$ and $8.4{\pm}0.4$ pixels/cell, respectively) and significantly low in serum starvation group ($4.9{\pm}0.4$ and $7.0{\pm}0.4$ pixels/cell, respectively, p<0.05). Comet tail lengths of serum starvation ($148.3{\pm}5.7$ ${\mu}M$) and confluence ($151.1{\pm}5.0$ ${\mu}M$) groups were found to be significantly (p<0.05) increased in comparison to that of cycling group ($137.1{\pm}7.5$ ${\mu}M$). These results suggest that the culture type of donor cells can affect the ROS generation, which leads the DNA fragmentation of the cells.

Effects of Recipient Oocytes and Donor Cells Condition on in Vitro Development of Cloned Embryos after Interspecies Nuclear Transfer with Caprine Somatic Cell (산양의 이종간 핵이식에 있어서 수핵난자에 따른 공여세포의 조건이 핵이식란의 체외발달에 미치는 영향)

  • 이명열;박희성
    • Reproductive and Developmental Biology
    • /
    • v.28 no.1
    • /
    • pp.13-20
    • /
    • 2004
  • This study was conducted to investigate the developmental ability of caprine embryos after somatic cell interspecies nuclear transfer. Donor cells were obtained from an ear-skin biopsy of a caprine, digested with 0.25% trypsin-EDTA in PBS, and primary fibroblast cultures were established in TCM-199 with 10% FBS. After maturation, expanded cumulus cells were removed by vigorous pipetting in the presence of 0.3% hyaluronidase. The matured oocytes were dipped in D-PBS plus 10% FBS+7.5 $\mu\textrm{g}$/ml cytochalasin B and 0.05 M sucrose. The reconstructed oocytes were electrically fused with donor cells in 0.3 M mannitol fusion medium. After the electofusion, embryos were activated by electric stimulation. Interspecies nuclear transfer embryos with bovine cytoplasts were cultured in TCM-199 medium supplemented with 10% FBS including bovine oviduct epithelial cells for 7∼9 day. On the other hand, the NT embryos with porcine cytoplasts were cultured in NCSU-23 medium supplemented with 10% FBS for 6∼8 day at $39^{\circ}C, 5% CO_2$ in air. In caprine-bovine NT embryos, the cleavage(2-cell) rate was 36.8% in confluence and 43.8% in serum starvation. The developmental rate of morula- and blastocyst-stage embryos was 0.0% in confluence and 18.8% in serum starvation. In caprine-porcine NT embryos, the cleavage(2-cell) rate was 76.7% in confluence and 66.7% in serum starvation. The developmental rate of morula and blastocyst stage embryos was 3.3% in confluence and 3.0% in serum starvation, and no significant difference was observed in synchronization treatment between donor cells. In caprine-bovine NT embryos, the cleavage(2-cell) rate of cultured donor cells was 30.8% and 17.6% in 5∼9 and 10∼14 passage(P<0.05). The developmental rate of morula and blastocyst stage embryos were significantly higher(P<0.05) in 5∼9 passage(23.1%) than in 10∼14 passage(0.0%) of cultured donor cells. In caprine-porcine NT embryos, the cleavage rate was significantly higher(P<0.05) in 5∼9 passage(86.7%) than in 10∼14 passage(50.0%) of cultured donor cells. The developmental rate of morula and blastocyst stage embryos were 3.3 and 0.0% in 5∼9 and 10∼14와 passage of cultured donor cells. In caprine-bovine NT embryos, the developmental rate of morula and blastocyst stage embryos were 22.6% in interspecies nuclear transfer, 33.9% in in vitro fertilization and 28.1% in parthenotes, which was no significant differed. The developmental rate of morula and blastocyst stage embryos with caprine-porcine NT embryos were lower(P<0.05) in interspecies nuclear transfer(5.1%) than in vitro fertiltzation(26.9%) and parthenotes(37.4%).

Effects of Donor Somatic Cell Conditions on In Vitro Development of Nuclear Transplanted Porcine Embryos (돼지 공여세포의 조건이 핵이식 수정란의 체외발달에 미치는 영향)

  • 홍승표;박준규;이명열;이지삼;정장용
    • Journal of Embryo Transfer
    • /
    • v.16 no.3
    • /
    • pp.213-221
    • /
    • 2001
  • This study was conducted to examine in vitro developmental ability of porcine embryos after somatic cell nuclear transfer. The porcine ear fell was cultured in vitro for confluency in serum-starvation condition(TCM-199 + 0.5% FBS) far 3~6 days of cell confluency. The zona pellucida of IVM oocytes were partially drilled using laser system. Single somatic cell was individually transferred into enucleated oocytes. And the reconstructed embryos were electrically fused(single DC 1.9kv/cm, 30$\mu$ sec) with 0.3M mannitol. After electrofusion, embryos were activated(single AC 5v/mm, 5sec) and cultured in HCSU-23 medium containing 10% FBS at 39$^{\circ}C$, 5% $CO_2$ in air for 6 to 8 days. The fusion rate of donor cells was 45.6, 36.8 and 46.1% in 3~4, 5~6 days of serum starvation and non serum starvation(N-S), and were 52.7. 53.0 and 51.7% in 1~2. 5~6 and 13~14 passages of donor cell culture, respectively. No significant difference was found in the fusion rate of donor cells by the duration of serum starvation treatment or the number of donor cell passages. By the size of donor cells, however, the fusion rate was significantly higher(P<0.05) for reconstructed embryos derived from 25r $\mu$m $\geq$ site of donor cells (65.3%) than that of 25~30$\mu$ m(42.5%) or 30$\mu$ m(45.5%)$\leq$ cells. The cleavage rate was significantly (P<0.05) higher in 3~4 darts of serum starvation treatment(67.1%) than that in N-S (50.7%) or 5~6 days of starvation(57.1%). The activation rate by the size of donor cells in fused oocytes was 56.5, 68.8 and 58.5%, respectively, and was not significant.

  • PDF

Antilipidperoxidative Effects of Brazilin in Alloxan-induced Diabetic Mice (AIIoxan 유도 당뇨병상태에서 과산화지질생성에 미치는 Brazilin의 효과)

  • 안영수;길이룡;소동수;창동신;김진형;문창규;박광식
    • Environmental Analysis Health and Toxicology
    • /
    • v.11 no.3_4
    • /
    • pp.69-73
    • /
    • 1996
  • Brazilin was tested for its ability to inhibit alloxan induced lipidperoxidation. Lipid peroxide contents in liver, kidney and serum were measured by the TBA method. ICR mice receiving alloxan at a dose of 43mg/kg via the tail vein after a 24 hrs starvation showed significantly increased lipid peroxide contents as compared to untreated control. Lipid peroxide contents in liver, kidney and serum of alloxan-induced diabetic mice were dosedependently decreased by the treatment of brazilin at a dose of 10mg/kg, 50mg/kg, 100 mg/kg for 5 days.

  • PDF